import numpy as np
import matplotlib.pyplot as plt
# Create u values
= np.linspace(0, 2, 400)
u
# Define the upper and lower boundaries of v
= 1 -(u**2)/4
v_upper = (u**2)/4 -1
v_lower
# Plot the region S
=(6, 6))
plt.figure(figsize0, 0, 0, 2), (0, 1, -1, 0), 'ko')
plt.plot(('r', label=r'$v = 1 -\frac{u^2}{4}$')
plt.plot(u, v_upper, 0, 0), (0, 1), 'r', lw=3)
plt.plot(('b', label=r'$v = \frac{u^2}{4} -1$')
plt.plot(u, v_lower, 0, 0), (0, -1), 'b', lw=3)
plt.plot((='lightgray', alpha=0.6)
plt.fill_between(u, v_lower, v_upper, color
# Formatting
"Region S in the uv-plane")
plt.title("u")
plt.xlabel("v")
plt.ylabel(
plt.legend()True)
plt.grid(0, 2)
plt.xlim(-1.1, 1.1)
plt.ylim('equal')
plt.gca().set_aspect(
plt.show()
10 Vector Calculus
10.1 Vector Functions
A parametric curve in space is a set of ordered triples \((x,y,z),\) \(~\)where
\[x=f(t), \;y=g(t), \;z=h(t)\]
are continuous on an interval: \(~a \leq t \leq b\)
The following
\[\mathbf{r}(t) =\left\langle f(t), \,g(t), \,h(t) \right\rangle = f(t)\,\mathbf{i} +g(t)\,\mathbf{j} +h(t)\,\mathbf{k}\]
are vector-valued functions
Limits
\(\displaystyle\lim_{t \to a} \mathbf{r}(t)=\left\langle \lim_{t \to a} f(t), \;\lim_{t \to a} g(t), \;\lim_{t \to a} h(t) \right\rangle\)
If \(~\)\(\displaystyle\lim_{t\to a} \mathbf{r}_1(t)=\mathbf{L}_1\) and \(~\)\(\displaystyle\lim_{t\to a} \mathbf{r}_2(t)=\mathbf{L}_2\), \(~\)then
\(\displaystyle\lim_{t\to a} c\mathbf{r}_1(t)=c\mathbf{L}_1\)
\(\displaystyle\lim_{t\to a} \left[\mathbf{r}_1(t) +\mathbf{r}_2(t) \right] =\mathbf{L}_1 +\mathbf{L}_2\)
\(\displaystyle\lim_{t\to a} \left[\mathbf{r}_1(t) \cdot \mathbf{r}_2(t) \right] =\mathbf{L}_1 \cdot \mathbf{L}_2\)
Continuity
A vector function \(\mathbf{r}\) is said to be continuous at \(t=a\) \(\,\)if
\(\displaystyle\,\mathbf{r}(a) \;\text{ is defined, }\phantom{\frac{1}{1}}\)
\(\displaystyle\lim_{t\to a} \mathbf{r}(t)\) exists, and
\(\displaystyle\lim_{t\to a} \mathbf{r}(t) = \mathbf{r}(a)\)
Derivatives
The derivative of a vector function \(\mathbf{r}\) is
\(\displaystyle\phantom{xx}\mathbf{r}'(t) = \lim_{\Delta t\to 0} \frac{1}{\Delta t} \left[ \mathbf{r}(t +\Delta t) -\mathbf{r}(t) \right]\)
for all \(\,t\,\) for which the limit exists
If \(~\mathbf{r}(t) = \langle f(t), g(t), h(t) \rangle,\) \(\,\)where \(~f\), \(g\), and \(h\,\) are differentiable, then
\(\phantom{xx}\mathbf{r}'(t) = \left\langle f'(t), g'(t), h'(t) \right\rangle\)
When \(\mathbf{r}\) have continuous first derivative and \(\mathbf{r}'(t)\neq\mathbf{0}~\) for all \(~t~\) in the open interval \((a,b),\) \(\,\)then \(\mathbf{r}\) is said to be a smooth function
In the case of the second derivative, \(\,\)we have
\(\phantom{xx} \mathbf{r}''(t) = \left\langle f''(t), g''(t), h''(t) \right\rangle = f''(t)\mathbf{i} +g''(t)\mathbf{j} +h''(t)\mathbf{k}\)
Chain rule
If \(\mathbf{r}\) is a differentiable vector function and \(s=u(t)\) is a differentiable scalar function, then the derivative of \(\mathbf{r}(s)\) with respect to \(t\) is
\(\displaystyle\phantom{xx}\frac{d\mathbf{r}}{dt} =\frac{d\mathbf{r}}{ds} \frac{ds}{dt} =\mathbf{r}'(s) u'(t)\)
Rules of Differentiation
Let \(\mathbf{r}_1(t)\) and \(\mathbf{r}_2(t)\) be differentiable vector functions and \(u(t)\) a differentiable scalar function
\(\displaystyle \frac{d}{dt} \left[ \mathbf{r}_1(t) +\mathbf{r}_2(t) \right] = \mathbf{r}_1'(t) +\mathbf{r}_2'(t)\)
\(\displaystyle \frac{d}{dt} \left[ u(t)\mathbf{r}_1(t) \right] = u(t)\mathbf{r}_1'(t) +u'(t)\mathbf{r}_1(t)\)
\(\displaystyle \frac{d}{dt} \left[ \mathbf{r}_1(t) \cdot \mathbf{r}_2(t) \right] = \mathbf{r}_1(t)\cdot\mathbf{r}_2'(t) +\mathbf{r}_1'(t)\cdot\mathbf{r}_2(t)\)
\(\displaystyle \frac{d}{dt} \left[ \mathbf{r}_1(t) \times \mathbf{r}_2(t) \right] = \mathbf{r}_1(t)\times\mathbf{r}_2'(t) +\mathbf{r}_1'(t)\times\mathbf{r}_2(t)\)
Integrals
\(\phantom{xx}\displaystyle\int \mathbf{r}(t) \,dt = \left[ \int f(t) \,dt \right]\mathbf{i} +\left[ \int g(t) \,dt \right]\mathbf{j} +\left[ \int h(t) \,dt \right]\mathbf{k}\)
Length of a Space Curve
If \(~\mathbf{r}(t) = f(t)\mathbf{i} +g(t)\mathbf{j} +h(t)\mathbf{k}\,\) is a smooth function, \(\,\)then it can be shown that the length of the smooth curve traced by \(\,\mathbf{r}\,\) is given by
\(\phantom{xx}\displaystyle s = \int_a^b \sqrt{\left[ f'(t) \right]^2 +\left[ g'(t) \right]^2 +\left[ h'(t) \right]^2}\,dt =\int_a^b \left\| \mathbf{r}'(t) \right\|\,dt\)
10.2 Motion on a Curve
Position
Suppose a body moves along a curve \(C\) so that its position at time \(t\) is given by the vector function
\(\phantom{xx}\mathbf{r}(t) = f(t)\mathbf{i} +g(t)\mathbf{j} +h(t)\mathbf{k}\)
Velocity and Acceleration
If \(\,f\), \(g\), and \(h\) have second derivatives, \(\,\) then the vectors
\(\phantom{xx}\begin{aligned} \mathbf{v}(t) &= \mathbf{r}'(t) = f'(t)\mathbf{i} +g'(t)\mathbf{j} +h'(t)\mathbf{k} \\ \mathbf{a}(t) &= \mathbf{r}''(t) = f''(t)\mathbf{i} +g''(t)\mathbf{j} +h''(t)\mathbf{k} \end{aligned}\)
are called the velocity and acceleration of the particle, respectively
The scalar function \(\left\| \mathbf{v}(t)\right\|\) is the speed of the particle
The speed is related to arc length \(s\) by \(s'(t) = \left\| \mathbf{v}(t) \right\|\)
If a particle moves with a constant speed \(c\), \(\,\) then its acceleration vector is perpendicular to the velocity vector \(\mathbf{v}\)
To see this, note that \(\mathbf{v}\cdot\mathbf{v}=c^2\). \(~\) We differentiate both sides with respect to \(t\) and obtain
\[{\frac{d}{dt}(\mathbf{v} \cdot \mathbf{v}) = \mathbf{v}\cdot\frac{d\mathbf{v}}{dt} +\frac{d\mathbf{v}}{dt} \cdot \mathbf{v} =2\mathbf{v}\cdot\frac{d\mathbf{v}}{dt}=0}\]
Thus, \(\displaystyle\,\frac{d\mathbf{v}}{dt} \cdot \mathbf{v}=0\) \(\text{ }\)or\(\text{ }\) \(\mathbf{a}(t) \cdot \mathbf{v}(t)=0~\,\) for all \(\,t\)
Centripetal Acceleration
For circular motion in the plane, described by \(\mathbf{r}(t) = r_0 \cos\omega t \,\mathbf{i} +r_0\sin\omega t \,\mathbf{j},\) \(\,\)it is evident that
\[\mathbf{r}''=-\omega^2\mathbf{r}\]
- This means that the acceleration vector \(\mathbf{a}(t)=\mathbf{r}''(t)\) points in the direction opposite to that of the position vector \(\mathbf{r}(t)\). \(\,\) We then say \(~\mathbf{a}(t)\) is centripetal acceleration
10.3 Curvature and Components of Acceleration
We know that \(\mathbf{r}'(t)\) is a tangent vector to the curve \(C\), and consequently
\[\mathbf{T}(t) = \frac{\mathbf{r}'(t)}{\left\| \mathbf{r}'(t) \right\|}\]
is a unit tangent
\[ \begin{aligned} \frac{d\mathbf{r}}{dt} &=\frac{d\mathbf{r}}{ds} \frac{ds}{dt}\;\text{ and so }\\[5pt] \frac{d\mathbf{r}}{ds} = \frac{\displaystyle\frac{d\mathbf{r}}{dt}} {\displaystyle\frac{ds}{dt}} &=\frac{\mathbf{r}'(t)}{\left\| \mathbf{r}'(t) \right\|} = \mathbf{T}(t) \end{aligned}\]
Let \(\,\mathbf{r}(t)\,\) be a vector function defining a smooth curve \(C\). \(\,\)If \(s\) is the arc length parameter and \(\mathbf{T}\) is the unit tangent vector, \(\,\)then the curvature of \(C\) at a point is
\[\kappa=\left\|\frac{d\mathbf{T}}{ds}\right\|\]
Using the chain rule, \(\,\)we can write
\[\frac{d\mathbf{T}}{dt}=\frac{d\mathbf{T}}{ds}\frac{ds}{dt} \;\;\Rightarrow\;\; \frac{d\mathbf{T}}{ds}=\frac{\displaystyle\frac{d\mathbf{T}}{\displaystyle dt}}{\frac{\displaystyle ds}{\displaystyle dt}}\]
In other words, \(\,\)curvature is given by \(\,\kappa(t)=\frac{\displaystyle\left\|\mathbf{T}'(t)\right\|}{\displaystyle\left\|\mathbf{r}'(t)\right\|}\)
Tangential and Normal Components of Acceleration
The velocity of the particle on \(C\) is \(~\mathbf{v}(t)=\mathbf{r}'(t)\), \(\,\)whereas its speed is \(\displaystyle\frac{ds}{dt}=v=\| \mathbf{v}(t) \|\). \(\,\) Thus, \[\mathbf{v}(t)=v\mathbf{T}\]
Differentiating this last expression with respect to \(t\) gives acceleration
\[\mathbf{a}(t)=v\frac{d\mathbf{T}}{dt}+\frac{dv}{dt}\mathbf{T}\]
It follows from the differentiation of \(\mathbf{T}\cdot\mathbf{T}=1\,\) that \(\displaystyle\,\mathbf{T}\cdot \frac{d\mathbf{T}}{dt}=0\). \(\,\)If \(\displaystyle\,\left\|\frac{d\mathbf{T}}{dt}\right\| \neq 0\), \(\,\)the vector
\[\mathbf{N}(t) = \frac{\frac{\displaystyle d\mathbf{T}}{\displaystyle dt}}{\left\| \frac{\displaystyle d\mathbf{T}}{\displaystyle dt}\right\|}\]
is a unit normal to the curve \(C\). \(\,\)The vector \(\mathbf{N}\) is also called the principal normal
Since curvature is \(\displaystyle\,\kappa = \frac{\left\|\frac{d\mathbf{T}}{dt} \right\|}{v}\), \(\,\) it follows that \(\displaystyle\frac{d\mathbf{T}}{dt}=\kappa v \mathbf{N}\). \(\,\)Thus
\[\mathbf{a}(t)=\kappa v^2 \mathbf{N} +\frac{dv}{dt}\mathbf{T} =a_N \mathbf{N} +a_T\mathbf{T}\]
- Binormal: \(\,\mathbf{B}(t)=\mathbf{T}(t) \times \mathbf{N}(t)\)
Formulas for \(a_T\), \(a_N\), and Curvature
\[ \begin{aligned} \mathbf{v}\cdot\mathbf{a} &= a_N(v\mathbf{T}\cdot\mathbf{N}) +a_T(v\mathbf{T}\cdot\mathbf{T})=a_T v\\[5pt] &\Rightarrow \; a_T =\frac{dv}{dt} =\frac{\mathbf{v}\cdot\mathbf{a}}{\| \mathbf{v} \|} =\frac{\mathbf{r}'(t) \cdot \mathbf{r}''(t)}{\| \mathbf{r}'(t) \|} \\ \\ \mathbf{v}\times\mathbf{a} &= a_N(v\mathbf{T}\times\mathbf{N}) +a_T(v\mathbf{T}\times\mathbf{T}) =a_N v\mathbf{B}\\[5pt] &\Rightarrow \; a_N =\kappa v^2 =\frac{\|\mathbf{v}\times\mathbf{a}\|}{\| \mathbf{v} \|} =\frac{\| \mathbf{r}'(t) \times \mathbf{r}''(t) \|}{\| \mathbf{r}'(t) \|} \\ \\ \kappa(t)&=\frac{\| \mathbf{r}'(t)\times\mathbf{r}''(t) \|}{\| \mathbf{r}'(t) \|^3} \end{aligned}\]
Radius of Curvature
\[\rho=\frac{1}{\kappa}\]
\(~\)
10.4 Partial Derivatives
- Functions of Two Variables
- Level Curves
Functions of Three Variables, Level Surfaces
\[w=F(x,y,z) \;\Rightarrow \; c=F(x,y,z)\]
ex) \(~\displaystyle w=\frac{x^2+y^2}{z}\)
Partial Derivatives
\(\phantom{xx} \begin{aligned} \frac{\partial z}{\partial x} &=\lim_{\Delta x \to 0} \frac{f(x+\Delta x, y) -f(x,y)}{\Delta x} = f_x \\ \frac{\partial z}{\partial y} &=\lim_{\Delta y \to 0} \frac{f(x, y+\Delta y) -f(x,y)}{\Delta y} = f_y \\ \frac{\partial^2 z}{\partial x^2} &=\frac{\partial}{\partial x}\left( \frac{\partial z}{\partial x} \right) = f_{xx} \\ \frac{\partial^2 z}{\partial x \partial y} &=\frac{\partial}{\partial x} \left( \frac{\partial z}{\partial y} \right) = f_{xy} \end{aligned}\)
Chain Rule
If \(z=f(u,v)\) is differentiable and \(u=g(x,y)\) and \(v=h(x,y)\) have continuous first partial derivatives, \(\,\)then
\[ \begin{aligned} \frac{\partial z}{\partial x}&= \frac{\partial z}{\partial u}\frac{\partial u}{\partial x} +\frac{\partial z}{\partial v}\frac{\partial v}{\partial x}\\ \frac{\partial z}{\partial y}&= \frac{\partial z}{\partial u}\frac{\partial u}{\partial y} +\frac{\partial z}{\partial v}\frac{\partial v}{\partial y} \end{aligned}\]
If \(z=f(u,v)\) is differentiable and \(u=g(t)\,\) and \(v=h(t)\) are differentiable functions of a single variable \(t\), \(\,\)the ordinary derivative \(\displaystyle\frac{dz}{dt}\) is
\[\frac{dz}{dt}=\frac{\partial z}{\partial u}\frac{du}{dt}+\frac{\partial z}{\partial v}\frac{dv}{dt}\]
\(~\)
10.5 Directional Derivatives
Vector Differential Operator
\(\phantom{xx} \begin{aligned} \nabla &= \mathbf{i} \frac{\partial }{\partial x} +\mathbf{j}\frac{\partial }{\partial y} \\ \nabla &= \mathbf{i}\frac{\partial }{\partial x} +\mathbf{j}\frac{\partial }{\partial y} +\mathbf{k}\frac{\partial }{\partial z} \end{aligned}\)
Gradient of a Function
\(\phantom{xx} \begin{aligned} \nabla f &= \mathbf{i} \frac{\partial f}{\partial x} +\mathbf{j}\frac{\partial f}{\partial y} \\ \nabla F &= \mathbf{i}\frac{\partial F}{\partial x} +\mathbf{j}\frac{\partial F}{\partial y} +\mathbf{k}\frac{\partial F}{\partial z} \end{aligned}\)
\(~\)
Generalization of Partial Differentiation
The directional derivative of \(z=f(x,y)\,\) in the direction of a unit vector \(\mathbf{u}\) \(\,\)is
\[ \begin{aligned} D_\mathbf{u} f(x,y) &= \lim_{h\to 0} \frac{f(x+\Delta x, \,y+\Delta y) -f(x,y)}{h} \\ &= \lim_{h\to 0} \frac{f(x+h\cos\theta, \,y+h\sin\theta) -f(x,y)}{h} = \nabla f(x,y)\cdot \mathbf{u} \end{aligned}\]
Partial Proof \(\,\) Let \(x\), \(y\), and \(\theta\) \(\,\)be fixed so that
\[g(t)=f(x+t\cos\theta,\,y+t\sin\theta)\]
is a function of one variable. \(\,\)We wish to compare the value of \(g'(0)\), \(\,\)which is found by two different methods
- First, \(\,\)by the definition of a derivative,
\[{g'(0)=\lim_{h\to 0} \frac{g(0+h)-g(0)}{h} =\lim_{h\to 0}\frac{f(x+h\cos\theta, \,y+h\sin\theta)-f(x,y)}{h} }\]
Second, \(\,\)by the chain rule,
\[ \begin{aligned} g'(t) &= f_1(x+t\cos\theta,\,y+t\sin\theta)\frac{d}{dt}(x+t\cos\theta) \\ &\qquad +f_2(x+t\cos\theta,\,y+t\sin\theta)\frac{d}{dt}(x+t\sin\theta) \\ &= f_1(x+t\cos\theta,\,y+t\sin\theta)\cos\theta +f_2(x+t\cos\theta,\,y+t\sin\theta)\sin\theta \\ \text{ } \\ &\big\Downarrow\;\; t\to 0 \\ \text{ } \\ g'(0) &= f_x(x,y)\cos\theta+f_y(x,y)\sin\theta \\[5pt] &=\left[\,f_x(x,y)\,\mathbf{i}+f_y(x,y)\,\mathbf{j} \,\right]\cdot \left(\cos\theta\,\mathbf{i}+\sin\theta\,\mathbf{j}\right) =\nabla f(x,y)\cdot \mathbf{u} \end{aligned}\]
For a function \(w=F(x,y,z)\), \(~\)the directional derivative is defined by
\[{\scriptsize \displaystyle D_\mathbf{u} F(x,y,z) = \lim_{h\to 0} \frac{F(x+h\cos\alpha, \,y+h\cos\beta, \,z +h\cos\gamma) -F(x,y,z)}{h} =\nabla F(x,y,z)\cdot \mathbf{u}}\]
Maximum Value of the Directional Derivative
\[ \begin{aligned} D_\mathbf{u}\,f &= \| \nabla f\| \| \mathbf{u} \| \cos\phi =\| \nabla f\| \cos\phi \\[5pt] &\,\Rightarrow\, \color{red}{-\| \nabla f\| \leq D_\mathbf{u} \,f \leq \| \nabla f \|} \end{aligned}\]
The gradient vector \(\nabla f\) points in the direction in which \(f\) increases most rapidly, \(\,\)whereas \(-\nabla f\) points in the direction of the most decrease of \(\,f\)
\(~\)
10.6 Tangent Planes and Normal Lines
- \(\nabla f\) is orthogonal to the level curve at \(P\)
The derivative of \(\,f\left(x(t), \,y(t)\right)=c\,\) with respect to \(\,t\,\) is
\[{\frac{\partial f}{\partial x}\frac{dx}{dt} +\frac{\partial f}{\partial y}\frac{dy}{dt}=0 =\left( \frac{\partial f}{\partial x}\mathbf{i} +\frac{\partial f}{\partial y} \mathbf{j} \right) \cdot \left( \frac{dx}{dt}\mathbf{i} +\frac{dy}{dt} \mathbf{j} \right) =\nabla f \cdot \mathbf{r}'}\]
The derivative of \(\,F\left(x(t),y(t),z(t)\right)=c\,\) implies that
\[ \begin{aligned} \frac{\partial F}{\partial x}&\frac{dx}{dt} +\frac{\partial F}{\partial y}\frac{dy}{dt} +\frac{\partial F}{\partial z}\frac{dz}{dt}=0 \\ &=\left( \frac{\partial F}{\partial x}\mathbf{i} +\frac{\partial F}{\partial y} \mathbf{j} +\frac{\partial F}{\partial z} \mathbf{k} \right) \cdot \left( \frac{dx}{dt}\mathbf{i} +\frac{dy}{dt} \mathbf{j} +\frac{dz}{dt} \mathbf{k} \right) =\nabla F \cdot \mathbf{r}' \end{aligned}\]
\(\nabla F\) is normal to the level surface at \(P\)
Let \(\,P(x_0,y_0,z_0)\) be a point on the graph of \(F(x,y,z)=c\). \(\,\)The tangent plane at \(P\) is
\[\\ F_x(x_0,y_0,z_0)(x-x_0) +F_y(x_0,y_0,z_0)(y-y_0) +F_z(x_0,y_0,z_0)(z-z_0)=0 \\\]
The line containing \(P(x_0,y_0,z_0)\) \(\,\)that is parallel to \(\nabla F(x_0,y_0,z_0)\) \(\,\)is called the normal line to the surface at \(P\)
\(~\)
10.7 Gradient, Curl and Divergence
Vector Fields - Vector functions of two or three variables
\[ \begin{aligned} \mathbf{f}(x,y) &= P(x,y) \mathbf{i} +Q(x,y)\mathbf{j}\\ \mathbf{f}(x,y,z) &= P(x,y,z) \mathbf{i} +Q(x,y,z)\mathbf{j} +R(x,y,z)\mathbf{k} \end{aligned}\]
The del operator combined with a scalar function \(\,\phi(x,y,z)\) \(\,\)produces a vector field
\[\mathbf{f}(x,y,z)=\nabla \phi = \mathrm{grad}\, f =\frac{\partial \phi}{\partial x}\mathbf{i} +\frac{\partial \phi}{\partial y}\mathbf{j} +\frac{\partial \phi}{\partial z}\mathbf{k} \;\Rightarrow\; \delta_{ij} \mathbf{e}_i \frac{\partial \phi}{\partial x_j}\]
called the gradient of \(\phi\), \(\,\)where \(\,\delta_{ij}\) \(\,\)is Kronecker delta
The curl of a vector field \(~\mathbf{f}=P\,\mathbf{i} +Q\,\mathbf{j} +R\,\mathbf{k}\,\) is the vector field
\[\nabla \times \mathbf{f}= \mathrm{curl}\, \mathbf{f}= \begin{vmatrix} \mathbf{i} & \mathbf{j} & \mathbf{k}\\ \frac{\partial }{\partial x} & \frac{\partial }{\partial y} & \frac{\partial }{\partial z} \\ P & Q & R \end{vmatrix} \; \Rightarrow \; \varepsilon_{ijk} \mathbf{e}_i \frac{\partial}{\partial x_j} f_k\]
where \(\,\varepsilon_{ijk}\) is Levi-Civita Symbol
The divergence of a vector field \(~\mathbf{f}=P\,\mathbf{i} +Q\,\mathbf{j} + R\,\mathbf{k}~\) is the scalar function
\[\nabla \cdot \mathbf{f}= \mathrm{div} \,\mathbf{f}= \frac{\partial P}{\partial x} +\frac{\partial Q}{\partial y} +\frac{\partial R}{\partial z} \;\Rightarrow\;\delta_{ij} \frac{\partial}{\partial x_i} f_j\]
Two important properties and plus alpha
\(\phantom{xx} \begin{aligned} \nabla\times\nabla f &= \mathrm{curl}(\mathrm{grad}\, f) = \mathbf{0}\\ &\Rightarrow \; \varepsilon_{ijk} \mathbf{e}_i \frac{\partial}{\partial x_j} \frac{\partial f}{\partial x_k} = 0 \,\mathbf{e}_i=\mathbf{0} \end{aligned}\)
\(\phantom{xx} \begin{aligned} \nabla \cdot(\nabla\times\mathbf{f}) &= \mathrm{div}(\mathrm{curl} \,\mathbf{f}) =0 \\ &\Rightarrow \; \delta_{ij} \frac{\partial}{\partial x_i} \varepsilon_{jlm} \frac{\partial}{\partial x_l} f_m = \varepsilon_{ilm} \frac{\partial^2}{\partial x_i \partial x_l} f_m=0 \end{aligned}\)
\(\displaystyle \phantom{xx} \nabla \cdot \nabla f =\nabla^2 f \; \Rightarrow \; \delta_{ij} \frac{\partial}{\partial x_i} \frac{\partial f}{\partial x_j} =\frac{\partial^2 f}{\partial x_i^2}\)
\(\displaystyle \phantom{xx} \nabla \cdot \nabla \mathbf{f} =\nabla^2 \mathbf{f} \; \Rightarrow \; \delta_{ij} \frac{\partial}{\partial x_i} \mathbf{e}_m \frac{\partial f_m}{\partial x_j} =\mathbf{e}_m \frac{\partial^2 f_m}{\partial x_i^2}\)
\(\displaystyle \phantom{xx} \begin{aligned} \nabla \times (\nabla \times \mathbf{f}) &= \nabla (\nabla \cdot \mathbf{f}) -\nabla^2 \mathbf{f} \\ &\Rightarrow \; \varepsilon_{ijk} \mathbf{e}_i \frac{\partial}{\partial x_j} \varepsilon_{klm} \frac{\partial}{\partial x_l}f_m =(\delta_{il}\delta_{jm}-\delta_{im}\delta_{jl}) \mathbf{e}_i \frac{\partial}{\partial x_j} \frac{\partial}{\partial x_l}f_m \\ &\phantom{xx} =\mathbf{e}_i \frac{\partial}{\partial x_i} \frac{\partial f_j}{\partial x_j} -\mathbf{e}_i \frac{\partial^2 f_i}{\partial x_j^2} \end{aligned}\)
Product Rules with \(\nabla\)
\(\phantom{xx} \begin{aligned} \nabla (fg) &= f \nabla g + g \nabla f \\ \nabla (\mathbf{u} \cdot \mathbf{v}) &= \mathbf{u} \times (\nabla \times \mathbf{v}) +\mathbf{v} \times (\nabla \times \mathbf{u}) +(\mathbf{u} \cdot \nabla) \mathbf{v} +(\mathbf{v} \cdot \nabla) \mathbf{u} \\ &= \mathbf{v} \cdot \nabla \mathbf{u} +\mathbf{u} \cdot \nabla \mathbf{v} \\ \nabla \cdot (f \mathbf{u}) &= f (\nabla \cdot \mathbf{u}) +\mathbf{u} \cdot \nabla f \\ \nabla \cdot (\mathbf{u} \times \mathbf{v}) &= \mathbf{v} \cdot (\nabla \times \mathbf{u}) -\mathbf{u} \cdot (\nabla \times \mathbf{v}) \\ \nabla \times (f \mathbf{u}) &= \nabla f \times \mathbf{u} +f (\nabla \times \mathbf{u}) \\ \nabla \times (\mathbf{u} \times \mathbf{v}) &= \mathbf{u} (\nabla \cdot \mathbf{v}) -\mathbf{v} (\nabla \cdot \mathbf{u}) +(\mathbf{v} \cdot \nabla) \mathbf{u} -(\mathbf{u} \cdot \nabla) \mathbf{v} \end{aligned}\)
Generalized Curvlinear Coorindates: \(\,\) \(\mathbf{q}_i\), \(\,q_i\), \(\,h_i\)
\[ \begin{aligned} \nabla f \; &= \mathbf{q}_1 \frac{1}{h_1} \frac{\partial f}{\partial q_1} + \mathbf{q}_2 \frac{1}{h_2} \frac{\partial f}{\partial q_2} + \mathbf{q}_3 \frac{1}{h_3} \frac{\partial f}{\partial q_3} \\ \\ \nabla \cdot \mathbf{u} \; &= \frac{1}{h_1 h_2 h_3} \left[ \frac{\partial }{\partial q_1} \left( u_1h_2h_3 \right) + \frac{\partial }{\partial q_2} \left( u_2h_1h_3 \right) + \frac{\partial }{\partial q_3} \left( u_3h_1h_2 \right)\right] \\ \\ \nabla^2 f\; & = \frac{1}{h_1 h_2 h_3} \left[ \frac{\partial }{\partial q_1} \left( \frac{h_2 h_3}{h_1} \frac{\partial f}{\partial q_1} \right) + \frac{\partial }{\partial q_2} \left( \frac{h_1 h_3}{h_2} \frac{\partial f}{\partial q_2} \right) + \frac{\partial }{\partial q_3} \left( \frac{h_1 h_2}{h_3} \frac{\partial f}{\partial q_3} \right)\right]\\ \\ \nabla \times \mathbf{u} \; &=\frac{1}{h_1 h_2 h_3} \begin{vmatrix} h_1 \mathbf{q}_1 & h_2 \mathbf{q}_2 & h_3 \mathbf{q}_3\\ \displaystyle\frac{\partial }{\partial q_1} & \displaystyle\frac{\partial }{\partial q_2} & \displaystyle\frac{\partial }{\partial q_3} \\ h_1 u_1 & h_2 u_2 & h_3 u_3 \end{vmatrix} \end{aligned}\]
Cylindrical Coordinates
\(\phantom{xx} q_1=r, \;q_2=\theta, \; q_3=z\)
\(\phantom{xx} h_1=h_r=1, \;\;h_2=h_\theta=r, \;\;h_3=h_z=1\)
Spherical Coordinates
\(\phantom{xx} q_1=\rho, \;q_2=\phi, \; q_3=\theta\)
\(\phantom{xx} h_1=h_\rho=1, \;\;h_2=h_\phi=\rho, \;\;h_3=h_\phi=\rho \sin\phi\)
Physical Interpretations
\(~\)
10.8 Line Integrals
- Integration of a function defined along a curve
Definite Integral
\[\lim_{\|P\|\to 0} \sum_{k=1}^n f(x_k^*)\Delta x_k = \int_a^b f(x)\,dx\]
- Line Integrals in the Plane
\[ \begin{aligned} \lim_{\| P \|\to 0} \sum_{k=1}^n G(x_k^*, y_k^*)\,\Delta x_k &= \int_C G(x,y)\,dx\\ \lim_{\| P \|\to 0} \sum_{k=1}^n G(x_k^*, y_k^*)\,\Delta y_k &=\int_C G(x,y)\,dy\\ \lim_{\| P \|\to 0} \sum_{k=1}^n G(x_k^*, y_k^*)\,\Delta s_k &= \int_C G(x,y)\,ds \end{aligned}\]
Method of Evaluation
Curve Defined Parametrically, \(\;x=f(t)\), \(\;y=g(t)\), \(\;a\leq t \leq b\)
\[ \begin{aligned} \int_C G(x,y)\,dx &=\int_a^b G(\,f(t), g(t)) \,f'(t)\,dt \\ \int_C G(x,y)\,dy &=\int_a^b G(\,f(t), g(t)) \,g'(t)\,dt \\ \int_C G(x,y)\,ds &=\int_a^b G(\,f(t), g(t)) \,\sqrt{[f'(t)]^2 +[g'(t)]^2}\,dt \end{aligned}\]
Curve Defined by an Explicit Function, \(\;y=f(x)\), \(\;a\leq x \leq b\)
\[ \begin{aligned} \int_C G(x,y)\,dx &=\int_a^b G(x, f(x)) \,dx \\ \int_C G(x,y)\,dy &=\int_a^b G(x, f(x)) \,f'(x)\,dx \\ \int_C G(x,y)\,ds &=\int_a^b G(x, f(x)) \,\sqrt{1 +[f'(x)]^2}\,dx \end{aligned}\]
Notation
\[{\displaystyle\int_C P\,dx +\int_C Q\,dy \,\Rightarrow \, \int_C P\,dx +Q \,dy}\]
\[{\displaystyle\int_{-C} P\,dx +Q\,dy = -\int_C P\,dx +Q\,dy}\]
A line integral along a closed curve \(C\)
\[\oint_C P \,dx +Q \,dy\]
Line Integrals in Space
\[{\int_C G(x,y,z)\,ds = \int_a^b G(\,f(t), g(t),h(t)) \,\sqrt{[f'(t)]^2 +[g'(t)]^2 +[h'(t)]^2}\,dt}\]
Suppose the vector-valued function
\[\mathbf{f}(x,y,z)=P(x,y,z)\mathbf{i} +Q(x,y,z)\mathbf{j} +R(x,y,z)\mathbf{k}\]
is defined along a curve \(C\) and
\[d\mathbf{r}=dx\mathbf{i} +dy\mathbf{j} +dz\mathbf{k}\,\]
is the displacement vector of points on \(C\), \(\,\)then
\[\int_C \mathbf{f}\cdot \,d\mathbf{r} =\int_C P(x,y,z) \, dx +Q(x,y,z) \, dy +R(x,y,z) \, dz\]
Work and Circulation \[W =\int_C \mathbf{f} \cdot d\mathbf{r} = \int_C \mathbf{f}\cdot \mathbf{T} \,ds \] \[\mathrm{Circulation}= \oint_C \mathbf{f} \cdot d\mathbf{r} = \oint_C \mathbf{f}\cdot \mathbf{T} \,ds \]
\(~\)
10.9 Independence of the Path
The value of a line integral
\[\int_C \mathbf{F}\cdot \,d\mathbf{r}\]
depends on the path of integration
Stated another way, \(\,\)if \(C_1\) and \(C_2\) are two different paths between the same points \(A\) and \(B\), \(\,\)then we expect that \[\int_{C_1} \mathbf{F}\cdot \,d\mathbf{r} \neq \int_{C_2} \mathbf{F}\cdot \,d\mathbf{r}\]
Path Independence
A line integral \(\displaystyle\int_C \mathbf{f}\cdot d\mathbf{r}~\) is independence of the path if
\[\int_{C_1} \mathbf{f}\cdot d\mathbf{r}=\int_{C_2}\mathbf{f}\cdot d\mathbf{r}\]
for any two paths \(C_1\) and \(C_2\) between \(A\) and \(B\)
A vector function \(\mathbf{f}\) in 2- or 3-space is said to be conservative if \(\,\mathbf{f}\) can be written as the gradient of a scalar function \(\phi\). \(\,\)The function \(\phi\) is called a potential function for \(\,\mathbf{f}\)
In other words, \(\,\mathbf{f}\) is conservative if there exists a function \(\phi\) such that \(\,\mathbf{f}=\nabla \phi\). \(\,\)A conservative vector field is also called a gradient vector field
Fundamental Theorem
If \(~\mathbf{f}(x,y,z)~\) is a conservative vector field in \(R\) and \(\phi\) is a potential function for \(\,\mathbf{f}\), \(\,\)then
\[\int_C \mathbf{f}\cdot d\mathbf{r}=\int_C \nabla\phi \cdot d\mathbf{r}=\phi(B) -\phi(A)\]
where \(A=(x(a), y(a), z(a))~\) and \(\,B=(x(b), y(b), z(b))\)
Equivalent Concepts: \(\,\)In an open connected region \(R\), \(\displaystyle\int_C \mathbf{f}\cdot d\mathbf{r}\) is independent of the path \(C\)
if and only if the vector field \(\mathbf{f}\) is conservative in \(R\)
if and only if \(\displaystyle\oint_{C'} \mathbf{f}\cdot d\mathbf{r}=0\,\) for every closed path \(\,C'\) in \(R\)
Test for a Conservative Field:
Suppose
\[\mathbf{f}(x,y,z)=P(x,y,z)\mathbf{i} +Q(x,y,z)\mathbf{j} +R(x,y,z)\mathbf{k}\]
is a conservative vector field in an open region of 3-space, and that \(P\), \(Q\), and \(R\) are continuous and have continuous first partial derivatives in that region
Then \(\,\mathbf{f}=\nabla \phi\,\) and \(\,\nabla\times\mathbf{f}=\nabla\times\nabla\phi=\mathbf{0}\), \(\,\)that is
\[{\nabla\times\mathbf{f}=\left( \frac{\partial R}{\partial y} -\frac{\partial Q}{\partial z}\right)\mathbf{i} +\left( \frac{\partial P}{\partial z} -\frac{\partial R}{\partial x}\right)\mathbf{j} +\left( \frac{\partial Q}{\partial x} -\frac{\partial P}{\partial y}\right)\mathbf{k}=\mathbf{0}}\;\;\]
\[~\;\Downarrow\]
\[\;\;{\frac{\partial P}{\partial y} =\frac{\partial Q}{\partial x}, \;\frac{\partial P}{\partial z} =\frac{\partial R}{\partial x},\; \frac{\partial Q}{\partial z} =\frac{\partial R}{\partial y}}\]
for all \(\,(x,y,z)\) in that region
\(~\)
10.10 Double Integrals
The Double Integral
Let \(\,f\) be a function of two variables defined on a closed region \(R\). Then the double integral of \(\,f\) over \(R\) \(\,\)is given by
\[\lim_{\|P\|\to 0} \sum_{k=1}^n f\left(x_k^*, y_k^*\right) \Delta A_k = \iint_R f(x,y)\,dA\]
Area and Volume
\[ A=\iint_R dA \]
\[ V=\iint_R f(x,y) \,dA \]
Properties of Double Integrals
\[ \iint_R kf(x,y) \,dA = k \iint_R f(x,y) \,dA \]
\[ \iint_R f(x,y) \pm g(x,y) \,dA = \iint_R f(x,y) \,dA \pm \iint_R g(x,y) \,dA \]
\[ \iint_R f(x,y) \,dA = \iint_{R_1} f(x,y) \,dA + \iint_{R_2} f(x,y) \,dA \]
Evaluation of Double Integrals
If \(R\) is of Type I, \(\,\)then
\[{\iint_R f(x,y) \,dA =\int_a^b\int_{g_1(x)}^{g_2(x)} f(x,y) \,dydx}\]
If \(R\) is of Type II, \(\,\)then
\[{\iint_R f(x,y) \,dA =\int_c^d\int_{h_1(y)}^{h_2(y)} f(x,y) \,dxdy}\]
Center of Mass and Moments of Inertia
\[ \bar{x} = \frac{\displaystyle\iint_R x\rho(x,y)\,dA}{M} \, \;\textrm{ and } \; \bar{y}=\frac{\displaystyle\iint_R y\rho(x,y) \,dA}{M}\]
\[ I_y=\iint_R x^2\rho(x,y) \, dA\;\textrm{ and } \; I_x=\iint_R y^2\rho(x,y) \,dA \]
\(~\)
10.11 Double Integrals in Polar Coordinates
Polar Rectangles
\[ \begin{aligned} \Delta A_k &=\frac{1}{2}(r_{k+1}^2 -r_k^2)\Delta \theta_k \\ &=\frac{1}{2}(r_{k+1} +r_k)(r_{k+1} -r_k) \Delta\theta_k \\[5pt] &=r_k^*\Delta r_k \Delta\theta_k \end{aligned}\]
Double Integrals in Polar Coordinates
\[ \begin{aligned} \lim_{\| P \|\to 0} \sum_{k=1}^n & f\left( r_k^*, \theta_k^* \right) r_k^* \Delta r_k \Delta\theta_k \\ & = \iint_R f(r,\theta) \,dA\\ & = \int_\alpha^\beta \int_{g_1(\theta)}^{g_2(\theta)} f(r,\theta)\,r \,dr \,d\theta \\ & =\int_a^b \int_{h_1(r)}^{h_2(r)} f(r,\theta)\,r \,d\theta \,dr \end{aligned}\]
\(~\)
10.12 Green’s Theorem
Suppose that \(C\) is a piecewise-smooth simple closed curve bounding a simply connected region \(R\)
If \(\,P\), \(Q\), \(\displaystyle\frac{\partial P}{\partial y}\), and \(\displaystyle\frac{\partial Q}{\partial x}\) are continuous on \(R\), \(\,\)then
\[{\oint_C P \,dx +Q \,dy = \iint_R \left( \frac{\partial Q}{\partial x} -\frac{\partial P}{\partial y} \right)\, dA}\]
\(~\)
Partial Proof
\[ \begin{aligned} -\iint_R \frac{\partial P}{\partial y}\, dA &= -\int_a^b \int_{g_1(x)}^{g_2(x)} \frac{\partial P}{\partial y} \,dy dx =-\int_a^b [P(x,g_2(x)) -P(x,g_1(x))] \,dx\\ & =\int_a^b P(x,g_1(x))\,dx +\int_b^a P(x,g_2(x)) \,dx = \oint_C P(x,y) \,dx \end{aligned}\]
\(~\)
Region with Holes
\[ \begin{aligned} \iint_R \left( \frac{\partial Q}{\partial x} -\frac{\partial P}{\partial y} \right)\, dA &=\iint_{R_1} \left( \frac{\partial Q}{\partial x} -\frac{\partial P}{\partial y} \right)\, dA +\iint_{R_2} \left( \frac{\partial Q}{\partial x} -\frac{\partial P}{\partial y} \right)\, dA\\ &=\oint_{C_1} P \,dx +Q \,dy +\oint_{C_2} P \,dx +Q \,dy =\oint_C P \,dx +Q \,dy \end{aligned}\]
\(~\)
Example \(\,\) Evaluate \(\displaystyle\oint_{C} \frac{-y}{x^2 +y^2}\, dx + \frac{x}{x^2 + y^2}\,dy\), \(\,\) where \(C=C_1 \cup C_2\) is the boundary of the shaded region \(R\)
\(~\)
Example \(\,\) Evaluate \(\displaystyle\oint_{C_1} \frac{-y}{x^2 +y^2}\, dx + \frac{x}{x^2 + y^2}\,dy\)
\(~\)
10.13 Surface Integrals
Surface Area
\[ \begin{aligned} \mathbf{u} &= \Delta x_k \mathbf{i} +f_x(x_k,y_k)\Delta x_k \mathbf{k}\\ \mathbf{v} &= \Delta y_k \mathbf{j} +f_y(x_k,y_k)\Delta y_k \mathbf{k}\\ & \Downarrow \\ \mathbf{u} \times \mathbf{v} &={\scriptsize\left[-f_x(x_k,y_k)\mathbf{i} -f_y(x_k,y_k)\mathbf{j}+\mathbf{k}\right] \Delta x_k \Delta y_k}\\ & \Downarrow \\ \Delta S_k &= {\sqrt{1 +\left[\,f_x(x_k,y_k)\right]^2 +\left[\,f_y(x_k,y_k)\right]^2}\Delta A_k } \end{aligned}\] Then the area of the surface over \(R\) is given by \[ { S=\iint_R \sqrt{1+\left[\,f_x(x,y)\right]^2 +\left[\,f_y(x,y)\right]^2}\,dA} \]
Surface Integral
Let \(\,G\,\) be a function of three variables defined over a region of space containing the surface \(S\). \(\,\)Then the surface integral of \(G\) over \(S\) is given by
\[ \begin{aligned} \lim_{\|P\|\to 0}&\sum_{k=1}^n G(x_k^*,y_k^*,z_k^*)\,\Delta S_k = \iint_S G(x,y,z)\,dS\\ &= \iint_R G(x,y,f(x,y)) \,\sqrt{1+\left[\,f_x(x,y)\right]^2 +\left[\,f_y(x,y)\right]^2}\,dA \end{aligned}\]
If a smooth surface \(S\) \(\,\)is \(g(x,y,z)=0,\) \(\,\)a unit normal is
\[\mathbf{n}=\frac{\nabla g}{\|\nabla g\|}\]
Integrals of Vector Fields
The total volume of a fluid passing through \(\,S\) \(\,\)is called the flux of \(\mathbf{v}\) through \(S\) and is given by
\[ \mathrm{flux} =\iint_S (\mathbf{v}\cdot\mathbf{n})\,dS \]
\(~\)
10.14 Stokes’ Theorem
Vector Form of Green’s Theorem
If \(\,\mathbf{f}(x,y)=P(x,y)\mathbf{i} +Q(x,y)\mathbf{j} \,\) is a two-dimensional vector field, \(\text{ }\)then
\[\mathrm{curl}\, \mathbf{f} =\nabla \times \mathbf{f} =\left|\begin{matrix} \mathbf{i} & \mathbf{j} & \mathbf{k}\\ \displaystyle\frac{\partial}{\partial x} & \displaystyle\frac{\partial}{\partial y} & \displaystyle\frac{\partial}{\partial z}\\ P & Q & 0 \end{matrix}\right| =\left( \frac{\partial Q}{\partial x} -\frac{\partial P}{\partial y} \right )\mathbf{k}\]
Green’s theorem can be written in vector notation as
\[\oint_C \mathbf{f}\cdot \,d\mathbf{r} =\oint_C \mathbf{f}\cdot\mathbf{T}\,ds =\iint_R (\nabla \times \mathbf{f}) \cdot \mathbf{k}\,dA\]
Stokes’ Theorem - Green’s Theorem in 3-Space
Let \(S\) be a piecewise-smooth orientable surface bounded by a piecewise-smooth simple closed curve \(C\)
Let \(~\mathbf{f}(x,y,z)=P(x,y,z)\mathbf{i} +Q(x,y,z)\mathbf{j} +R(x,y,z)\mathbf{k} \,\) be a vector field for which \(P\), \(Q\), and \(R\) are continuous and have continuous first partial derivatives in a region of 3-space containing \(S\). \(~\)If \(C\) is traversed in the positive direction, then
\[\oint_C \mathbf{f}\cdot \,d\mathbf{r} =\oint_C \mathbf{f}\cdot\mathbf{T}\,ds = \iint_R (\nabla \times\mathbf{f}) \cdot \mathbf{n}\,dS\]
Physical Interpretation of Curl
\[ \begin{aligned} \oint_{C_r} \mathbf{f} \cdot d\mathbf{r} &= \iint_{S_r} \left[\nabla\times\mathbf{f}(P_0)\right] \cdot \mathbf{n}(P_0)\, dS\\ &= \left[\nabla\times\mathbf{f}(P_0)\right]\, \cdot \mathbf{n}(P_0)\,\iint_{S_r}\,dS =\left[\nabla\times\mathbf{f}(P_0)\right] \cdot \mathbf{n}(P_0)\,S_r\\ &\Downarrow\\ \left[\nabla\times\mathbf{f}(P_0)\right] \cdot \mathbf{n}(P_0) &= \lim_{r\to 0} \frac{1}{S_r}\oint_{C_r} \mathbf{f} \cdot d\mathbf{r} \approx \frac{1}{S_r}\oint_{C_r} \mathbf{f} \cdot d\mathbf{r} \end{aligned}\]
\(~\)
10.15 Triple Integrals
Let \(F\) be a function of three variables defined over a closed region \(D\) of space. Then the triple integral of \(F\) over \(D\) is given by
\[{\lim_{\| P\|\to 0} \sum_{k=1}^n F(x_k^*,y_k^*,z_k^*)\,\Delta V_k = \iiint_D F(x,y,z)\,dV}\]
Evaluation by Iterated Integrals
\[ \begin{aligned} \iiint_D F(x,y,z)\,dV &= \iint_R \left[ \int_{f_1(x,y)}^{f_2(x,y)} F(x,y,z)\,dz \right]\,dA\\ &= \int_a^b \int_{g_1(x)}^{g_2(x)} \int_{f_1(x,y)}^{f_2(x,y)} F(x,y,z)\,dz\,dy\,dx \end{aligned}\]
\(~\)
Example \(\,\) Find the volume of the solid in the first octant bounded by the graphs of \(z=1-y^2\), \(y=2x\), and \(x=3\)
\(~\)
Cylindrical Coordinates
\[\begin{aligned} x=r\cos\theta, \;\;&y=r\sin\theta, \;\;z=z \\ &\Downarrow \\ r^2 = x^2 +y^2, \;\; &\tan\theta=\frac{y}{x},\;\; z=z \end{aligned}\]
Triple Integrals in Cylindrical Coordinates
\[ \begin{aligned} \iiint_D F(r,\theta,z)\,dV &= \iint_R \left[ \int_{f_1(r,\theta)}^{f_2(r,\theta)} F(r,\theta,z)\,dz \right]\,dA \\ &= \int_\alpha^\beta \int_{g_1(\theta)}^{g_2(\theta)} \int_{f_1(r,\theta)}^{f_2(r,\theta)} F(r,\theta,z)\,r\,dz\,dr\,d\theta \end{aligned}\]
Spherical Coordinates
\[ \begin{aligned} x = \rho\sin\phi\cos\theta, \;\; &y=\rho\sin\phi\sin\theta, \;\; z=\rho\cos\phi \\ &\Downarrow \\ \rho^2 =x^2 +y^2 +z^2, \;\; &\tan\theta=\frac{y}{x}, \;\;\cos\phi=\frac{z}{\sqrt{x^2 +y^2 +z^2}} \end{aligned}\]
- Triple Integrals in Spherical Coordinates
\[ \begin{aligned} \iiint_D &F(\rho,\theta,\phi)\,dV \\ &= \int_\alpha^\beta \int_{g_1(\theta)}^{g_2(\theta)} \int_{f_1(\phi,\theta)}^{f_2(\phi,\theta)} F(\rho,\theta,\phi)\, \rho^2 \sin\phi\, d\rho\,d\phi\,d\theta \end{aligned}\]
10.16 Divergence Theorem
Another Vector Form of Green’s Theorem
\[ \begin{aligned} \oint_C (\mathbf{f}\cdot\mathbf{n})\,ds &= \oint_C -Qdx +Pdy \\ &= \iint_R \left[ \frac{\partial P}{\partial x} -\left( -\frac{\partial Q}{\partial y} \right) \right]\,dA = \iint_R \left[ \frac{\partial P}{\partial x} +\frac{\partial Q}{\partial y} \right]\,dA \\ &= \iint_R \nabla\cdot\mathbf{f}\,dA \end{aligned}\]
where \(\displaystyle\,\mathbf{n}=\frac{dy}{ds}\mathbf{i} -\frac{dx}{ds}\mathbf{j}\)
Divergence Theorem
Let \(D\,\) be a closed and bounded region in 3-space with a piecewise-smooth boundary \(S\) that is oriented outward
Let \(\;\mathbf{f}(x,y,z)=P(x,y,z)\,\mathbf{i}+Q(x,y,z)\,\mathbf{j} +R(x,y,z)\,\mathbf{k}~\) be a vector field for which \(P\), \(Q,\) and \(R\) are continuous first partial derivatives in a region of 3-space containing \(D\). \(\,\) Then
\[\iint_S (\mathbf{f}\cdot \mathbf{n})\,dS =\iiint_D \nabla\cdot\mathbf{f}\,dV\]
Partial Proof
\[{\scriptsize \displaystyle\iiint_D \frac{\partial R}{\partial z}\,dV =\iint_{R'} \left[ \int_{f_1(x,y)}^{f_2(x,y)} \frac{\partial R}{\partial z}\,dz \right]\,dA =\iint_{R'} \left[ R(x,y,f_2(x,y)) -R(x,y,f_1(x,y)) \right] \,dA }\]
\[{\scriptsize \displaystyle\iint_S R(\mathbf{k}\cdot\mathbf{n}) \,dS=\iint_{S_1} R(\mathbf{k}\cdot\mathbf{n})\,dS +\iint_{S_2} R(\mathbf{k}\cdot\mathbf{n})\,dS +\iint_{S_3} R(\mathbf{k}\cdot\mathbf{n}) \,dS }\]
On \(S_1\): \(\,\) Since the outward normal points downward, \(g(x,y,z)=f_1(x,y)-z=0\). Thus
\[ \begin{aligned} \mathbf{n} &= \frac{ \frac{\partial f_1}{\partial x} \mathbf{i} +\frac{\partial f_1}{\partial y} \mathbf{j} -\mathbf{k} }{ \sqrt{1+\left(\frac{\partial f_1}{\partial x}\right)^2 +\left(\frac{\partial f_1}{\partial y}\right)^2}} \;\; \Rightarrow \;\; \mathbf{k}\cdot\mathbf{n} =\frac{-1}{\sqrt{1+\left(\frac{\partial f_1}{\partial x}\right)^2 +\left(\frac{\partial f_1}{\partial y}\right)^2}} \\ &\Downarrow \\ \iint_{S_1} &R(\mathbf{k}\cdot\mathbf{n})\,dS = -\iint_{R'} R(x,y,f_1(x,y))\,dA \end{aligned}\]
On \(S_2\): \(\,\) Since the outward normal points upward, \(g(x,y,z)=z -f_2(x,y)=0\). Thus
\[ \begin{aligned} \mathbf{n} &= \frac{ -\frac{\partial f_2}{\partial x} \mathbf{i} -\frac{\partial f_2}{\partial y} \mathbf{j} +\mathbf{k} }{ \sqrt{1+\left(\frac{\partial f_2}{\partial x}\right)^2 +\left(\frac{\partial f_2}{\partial y}\right)^2}} \;\; \Rightarrow \;\; \mathbf{k}\cdot\mathbf{n} =\frac{1}{\sqrt{1+\left(\frac{\partial f_2}{\partial x}\right)^2 +\left(\frac{\partial f_2}{\partial y}\right)^2}} \\ &\Downarrow \\ \iint_{S_2} &R(\mathbf{k}\cdot\mathbf{n})\,dS = \iint_{R'} R(x,y,f_2(x,y))\,dA \end{aligned}\]
On \(S_3\): \(\,\) \(\mathbf{k}\cdot\mathbf{n}=0\)
\[\quad \iint_{S_3} R(\mathbf{k}\cdot\mathbf{n})\,dS = 0\]
Physical Interpretation of Divergence
\[ \begin{aligned} \iint_{S_r} (\mathbf{f} \cdot \mathbf{n})\,dS &= \iiint_{D_r} \nabla\cdot\mathbf{f}\,dV \\ &\approx \iiint_{D_r} \nabla\cdot\mathbf{f}(P_0)\,dV = \nabla\cdot\mathbf{f}(P_0) \iiint_{D_r}\,dV = \nabla\cdot\mathbf{f}(P_0) D_r\\ &\Downarrow\\ \nabla\cdot\mathbf{f}(P_0) &= \lim_{r\to 0} \frac{1}{D_r}\iint_{S_r} (\mathbf{f} \cdot \mathbf{n})\,dS \end{aligned}\]
Continuity Equation
\[ \begin{aligned} \frac{dm}{dt} &= \frac{d}{dt}\iiint_D \rho(x,y,z,t)\,dV = \iiint_D \frac{\partial \rho}{\partial t}\,dV \\ &= -\iint_S (\rho\mathbf{v}\cdot\mathbf{n})\,dS =-\iiint_D \nabla\cdot(\rho\mathbf{v})\,dV\\ &\Downarrow \\ \iiint_D \left[ \frac{\partial \rho}{\partial t} \right. &+\left. \phantom{\frac{}{}}\nabla\cdot(\rho\mathbf{v}) \right]\,dV=0 \\ &\Downarrow \\ \frac{\partial \rho}{\partial t} & +\nabla\cdot(\rho\mathbf{v})=0 \end{aligned}\]
Euler’s Equation of Motion
Allowing for the presence of a gravitational body force per unit mass \(\mathbf{g}\), \(\,\)the basic equations of an ideal fluid are
\[\frac{D \mathbf{v}}{D t} = -\frac{1}{\rho} \nabla p + \mathbf{g}\]
\[\nabla \cdot \mathbf{v} = 0\]
Furthermore, it can be helpful to use \(\mathbf{g}=-\nabla \chi\) \(\,\)and the identity
\[ \left( \mathbf{v} \cdot \nabla \right) \mathbf{v} = \left( \nabla \times \mathbf{v} \right) \times \mathbf{v} + \nabla \left( \frac{1}{2} \mathbf{v}^2 \right)\]
to cast the momentum equation into the form
\[ \frac{\partial \mathbf{v}}{\partial t} + \left( \nabla \times \mathbf{v} \right) \times \mathbf{v} = -\nabla \left( \frac{p}{\rho} +\frac{1}{2} \mathbf{v}^2 + \chi \right) =- \nabla H\]
\(~\)
10.17 Change of Variables in Multiple Integrals
To change the Variable in a Definite Integral
\[\int_a^b f(x)\,dx =\int_c^d f(g(u))\, g'(u)\,du\]
Double Integrals
\[\iint_R F(x,y)\,dA = \iint_R F(f(u,v), g(u,v))\, \left| \frac{\partial(x,y)}{\partial(u,v)} \right|\,dA'\]
\[\left| \frac{\partial(x,y)}{\partial(u,v)} \right| = \left|\begin{matrix} \frac{\partial x}{\partial u} & \frac{\partial x}{\partial v}\\ \frac{\partial y}{\partial u} & \frac{\partial y}{\partial v} \end{matrix}\right| = h_1 h_2 dq_1 dq_2\]
Triple Integrals
\[\iiint_D F(x,y,z)\,dV = \iiint_D F\left(f(u,v,w), g(u,v,w), h(u,v,w)\right)\, \left| \frac{\partial(x,y,z)}{\partial(u,v,w)} \right|\,dV'\]
\[\left| \frac{\partial (x,y,z)}{\partial (u,v,w)} \right| = \left|\begin{matrix} \frac{\partial x}{\partial u} & \frac{\partial x}{\partial v} & \frac{\partial x}{\partial w}\\ \frac{\partial y}{\partial u} & \frac{\partial y}{\partial v} & \frac{\partial y}{\partial w}\\ \frac{\partial z}{\partial u} & \frac{\partial z}{\partial v} & \frac{\partial z}{\partial w} \end{matrix}\right| = h_1 h_2 h_3 dq_1 dq_2 dq_3\]
\(~\)
Worked Exercises
1. \(~\) Find an equation of the plane containing the lines \(x=t\), \(~y=4t\), \(~z=-2t\), and \(~x=1+t\), \(~y=1+4t\), \(~z=3-2t\)
Solution
Step 1: \(~\) Write the parametric forms of both lines
First line:
\[ L_1: \begin{cases} x = t \\ y = 4t \\ z = -2t \end{cases}\\ \;\Rightarrow\; \begin{aligned} &\text{Point: } P_1 = (0, 0, 0)\\ &\text{Direction vector: } \mathbf{d}_1 = \langle 1, 4, -2 \rangle \end{aligned}\]
Second line:
\[ L_2: \begin{cases} x = 1 + t \\ y = 1 + 4t \\ z = 3 - 2t \end{cases} \;\Rightarrow\; \begin{aligned} &\text{Point: } P_2 = (1, 1, 3)\\ &\text{Direction vector: } \mathbf{d}_2 = \langle 1, 4, -2 \rangle \end{aligned}\]
Step 2: \(~\) Observe relationship between the lines
- Both lines share the same direction vector: \(\mathbf{d}_1 = \mathbf{d}_2 = \langle 1, 4, -2 \rangle\)
- But they pass through different points
So the lines are parallel and distinct, and therefore they lie in a common plane
Step 3: \(~\) Find two vectors in the plane
The plane is determined by:
Direction vector of the lines: \[\mathbf{v}_1 = \langle 1, 4, -2 \rangle\]
Vector connecting a point on one line to a point on the other line:
\[\mathbf{v}_2 = P_2 - P_1 = \langle 1, 1, 3\rangle - \langle0, 0, 0\rangle = \langle 1, 1, 3 \rangle\]
Step 4: \(~\) Find a normal vector to the plane
Take the cross product:
\[\mathbf{n} = \mathbf{v}_1 \times \mathbf{v}_2 = \begin{vmatrix} \mathbf{i} & \mathbf{j} & \phantom{-}\mathbf{k} \\ 1 & 4 & -2 \\ 1 & 1 & \phantom{-}3 \end{vmatrix}\]
Compute:
\[\mathbf{n} = {\scriptsize\mathbf{i}(4 \cdot 3 - (-2)\cdot 1) - \mathbf{j}(1 \cdot 3 - (-2)\cdot 1) + \mathbf{k}(1 \cdot 1 - 4 \cdot 1)} \;\Rightarrow\; \mathbf{n} = \langle 14, -5, -3 \rangle\]
Step 5: \(~\) Use the point-normal form of a plane
With point \(P_1 = (0,0,0)\) and normal vector \(\langle 14, -5, -3 \rangle\), the equation is:
\[14(x - 0) - 5(y - 0) - 3(z - 0) = 0 \Rightarrow 14x - 5y - 3z = 0\]
\(~\)
2. \(~\) Find an equation of the plane containing \((1, 7, -1)\) that is perpendicular to the line of intersection of \(-x +y -8z=4~\) and \(~3x -y +2z=0\)
Solution
Step 1: \(~\) Find direction vector of the line of intersection
The line of intersection of two planes lies in both planes, and its direction vector is perpendicular to both normals of the planes
So, compute the cross product of the normal vectors of the two planes
- Normal to \(\pi_1\): \(~\mathbf{n}_1 = \langle -1, 1, -8 \rangle\)
- Normal to \(\pi_2\): \(~\mathbf{n}_2 = \langle 3, -1, 2 \rangle\)
Then:
\[ \mathbf{d} = \mathbf{n}_1 \times \mathbf{n}_2 = \begin{vmatrix} \phantom{-}\mathbf{i} & \phantom{-}\mathbf{j} & \phantom{-}\mathbf{k} \\ -1 & \phantom{-}1 & -8 \\ \phantom{-}3 & -1 & \phantom{-}2 \end{vmatrix}\]
Compute the determinant:
\[\begin{aligned} \mathbf{d} &= {\scriptsize\mathbf{i}(1\cdot2 - (-8)\cdot(-1)) - \mathbf{j}((-1)\cdot2 - (-8)\cdot3) + \mathbf{k}((-1)\cdot(-1) - 1\cdot3)} \\ &= \langle -6, -22, -2 \rangle \end{aligned}\]
This is the direction vector of the line of intersection.
Step 2: \(~\) Use the fact that the desired plane is perpendicular to this line
So the direction vector \(~\mathbf{d} = \langle -6, -22, -2 \rangle\) is the normal vector of the desired plane
We now have:
- Point on the plane: \((1, 7, -1)\)
- Normal vector: \(~\mathbf{n} = \langle -6, -22, -2 \rangle\)
Step 3: \(~\) Use point-normal form of a plane
\[-6(x - 1) -22(y - 7) -2(z + 1) = 0\]
Expand:
\[-6x + 6 -22y + 154 -2z -2 = 0 \Rightarrow -6x - 22y - 2z + 158 = 0\]
Multiply both sides by -1 to make the leading coefficient positive:
\[6x + 22y + 2z = 158\]
\(~\)
3. \(~\) Use Green’s theorem to evaluate the given double integral by a line integral
\[\iint_R x^2 \,dA\]
where \(R~\) is the region bounded by the ellipse \(\displaystyle\frac{x^2}{9} +\frac{y^2}{4}=1\)
Solution
Step 1: \(~\) Green’s Theorem
Green’s Theorem relates a line integral over a positively oriented, simple closed curve \(C\) to a double integral over the region \(R\) it encloses:
\[\iint_R \left( \frac{\partial Q}{\partial x} - \frac{\partial P}{\partial y} \right) dA = \oint_C P\,dx + Q\,dy\]
We need to rewrite \(\displaystyle \iint_R x^2 \, dA\) as the right-hand side of Green’s Theorem.
Step 2: \(~\) Choose \(P(x, y)\) and \(Q(x, y)\)
We want:
\[\frac{\partial Q}{\partial x} - \frac{\partial P}{\partial y} = x^2\]
Let’s choose:
\(\displaystyle P = 0 \Rightarrow \frac{\partial P}{\partial y} = 0\)
\(\displaystyle Q = \frac{1}{3} x^3 \Rightarrow \frac{\partial Q}{\partial x} = x^2\)
So:
\[\frac{\partial Q}{\partial x} - \frac{\partial P}{\partial y} = x^2\]
Step 3: \(~\) Set up the line integral
Then by Green’s Theorem:
\[\iint_R x^2 \, dA = \oint_C P\,dx + Q\,dy = \oint_C \frac{1}{3} x^3 \, dy\]
where \(C\) is the positively oriented boundary of the ellipse.
Step 4: \(~\) Parametrize the ellipse
Given:
\[\frac{x^2}{9} + \frac{y^2}{4} = 1\]
Use the parametric equations:
\[x = 3\cos\theta, \quad y = 2\sin\theta, \quad 0 \leq \theta \leq 2\pi\]
Compute:
\(x^3 = (3\cos\theta)^3 = 27\cos^3\theta\)
\(\displaystyle dy = \frac{dy}{d\theta} \, d\theta = 2\cos\theta \, d\theta\)
Now plug into the line integral:
\[\oint_C \frac{1}{3} x^3 \, dy = \int_0^{2\pi} \frac{1}{3} \cdot 27 \cos^3\theta \cdot 2\cos\theta \, d\theta = \int_0^{2\pi} 18\cos^4\theta \, d\theta\]
Step 5: \(~\) Evaluate the integral
Use the identity:
\[\cos^4\theta = \frac{3}{8} + \frac{1}{2} \cos(2\theta) + \frac{1}{8} \cos(4\theta)\]
So:
\[\int_0^{2\pi} 18 \cos^4\theta \, d\theta = 18 \int_0^{2\pi} \left( \frac{3}{8} + \frac{1}{2} \cos(2\theta) + \frac{1}{8} \cos(4\theta) \right) d\theta\]
Now integrate:
\(\displaystyle\int_0^{2\pi} \frac{3}{8} \, d\theta = \frac{3}{8} \cdot 2\pi = \frac{3\pi}{4}\)
\(\displaystyle\int_0^{2\pi} \cos(2\theta) \, d\theta = 0\)
\(\displaystyle\int_0^{2\pi} \cos(4\theta) \, d\theta = 0\)
So:
\[\iint_R x^2\,dA = 18 \cdot \frac{3\pi}{4} = \frac{27\pi}{2}\]
\(~\)
4. \(~\) Find the work done by the given force \(~\mathbf{f}=(x-y)\mathbf{i} +(x+y)\mathbf{j}~\) around the closed curve in the following
Solution
The image shows a region bounded between two quarter circles:
- Outer curve: \(x^2 + y^2 = 4\) (radius 2)
- Inner curve: \(x^2 + y^2 = 1\) (radius 1)
The region is the quarter annulus in the first quadrant, swept from the positive \(x\)-axis to the positive \(y\)-axis, and the curve is oriented counterclockwise, forming a positively oriented closed curve \(C\)
Step 1: \(~\) Use Green’s Theorem
We are to compute:
\[\oint_C \mathbf{f} \cdot d\mathbf{r} = \iint_R \left( \frac{\partial N}{\partial x} - \frac{\partial M}{\partial y} \right)\,dA\]
Where:
- \(M = x - y \Rightarrow \frac{\partial M}{\partial y} = -1\)
- \(N = x + y \Rightarrow \frac{\partial N}{\partial x} = 1\)
So:
\[\frac{\partial N}{\partial x} - \frac{\partial M}{\partial y} = 1 - (-1) = 2\]
Step 2: \(~\) Area of the Region \(R\)
The region \(R\) is a quarter annulus between radius 1 and 2, in the first quadrant.
Area of an annulus between \(r = 1\) and \(r = 2\) is:
\[\text{Full area} = \pi(2^2) - \pi(1^2) = 4\pi - \pi = 3\pi \]
But we only have \(1/4\) of it:
\[\text{Area}(R) = \frac{1}{4} \cdot 3\pi = \frac{3\pi}{4}\]
Step 3: \(~\) Apply Green’s Theorem
\[\oint_C \mathbf{f} \cdot d\mathbf{r} = \iint_R 2\, dA = 2 \cdot \frac{3\pi}{4} = \frac{3\pi}{2}\]
\(~\)
5. \(~\) Evaluate the integral
\[\iint_R \frac{1}{\sqrt{(x-y)^2 +2(x+y) +1}} \,dA\]
where \(R\) is the region bounded by the graphs of \(y=x\), \(x=2\), and \(y=0\) by means of the change of variables \(x=u +uv\), \(y=v +uv\)
Solution
Step 1: \(~\) Understand the transformation
We compute:
- \(x - y = (u + uv) - (v + uv) = u - v\)
- \(x + y = (u + uv) + (v + uv) = u + v + 2uv\)
Then,
\[(x - y)^2 + 2(x + y) + 1 = (u - v)^2 + 2(u + v + 2uv) + 1 = (u +v +1)^2\]
Step 2: \(~\) Jacobian of the transformation
We need the Jacobian determinant \(J = \left| \frac{\partial(x,y)}{\partial(u,v)} \right|\). Compute partial derivatives:
\[x = u + uv \Rightarrow \begin{cases} \frac{\partial x}{\partial u} = 1 + v, \\ \frac{\partial x}{\partial v} = u, \end{cases} \quad y = v + uv \Rightarrow \begin{cases} \frac{\partial y}{\partial u} = v, \\ \frac{\partial y}{\partial v} = 1 + u. \end{cases}\]
So the Jacobian matrix is:
\[J = \begin{vmatrix} 1 + v & u \\ v & 1 + u \end{vmatrix} = (1 + v)(1 + u) - uv = 1 + u + v + uv - uv = 1 + u + v\]
Step 3: \(~\) Find the region \(S\) in the \(uv\)-plane
We translate the region \(R\) into the \(uv\)-coordinates
From the substitution:
\[x = u + uv = u(1 + v), \quad y = v + uv = v(1 + u)\]
We now rewrite the boundaries:
- \(y = 0 \Rightarrow v(1 + u) = 0 \Rightarrow v = 0\) (since \(1 + u \ne 0\))
- \(y = x \Rightarrow v(1 + u) = u(1 + v) \Rightarrow v = u\)
- \(x = 2 \Rightarrow u(1 + v) = 2 ⇒ u = \frac{2}{1 + v}\)
So the region in the \(uv\)-plane is:
- lower bound: \(v = 0\)
- upper bound: \(v = u\)
- and \(u \le \frac{2}{1 + v}\)
Let’s fix bounds:
Since \(u = \frac{2}{1 + v}\), and also \(v = u\), we substitute:
\[v = \frac{2}{1 + v} \Rightarrow v(1 + v) = 2 \Rightarrow (v - 1)(v + 2) = 0\]
So \(v = 1\) is the upper limit (since \(v > 0\)), and the region \(S\) is bounded by:
- \(0 \le v \le 1\)
- \(v \le u \le \frac{2}{1 + v}\)
Step 4: \(~\) Change of variables in the integral
We rewrite the integral in terms of \(u\), \(v\):
\[\iint_S \frac{1}{\sqrt{(u + v +1)^2}} \cdot |J| \, du\, dv\]
So the integrand becomes simply 1. Then the integral becomes the area of the region \(S\):
\[\iint_S 1 \, du\, dv = \int_{v=0}^{1} \int_{u=v}^{\frac{2}{1 + v}} 1 \, du\, dv = \int_0^1 \left( \frac{2}{1 + v} - v \right) dv =2 \ln 2 - \frac{1}{2}\]
\(~\)
6. \(~\) Evaluate the integral
\[ \iint_R (x^2 +y^2) \sqrt[3]{x^2 -y^2} \,dA \]
where \(R\) is the region bounded by the graphs of \(x=0\), \(x=1\), \(y=0\), and \(y=1\) by means of the change of variables \(u=2xy\), \(v=x^2 -y^2\)
Solution
Step 1: \(~\) Compute the Jacobian
We need the Jacobian determinant \(J = \left| \frac{\partial(x, y)}{\partial(u, v)} \right|\), but we are given \(u = 2xy\), \(v = x^2 - y^2\), so we compute \(\frac{\partial(u, v)}{\partial(x, y)}\) and then take the reciprocal for the change of variables
Compute partial derivatives:
- \(\displaystyle u = 2xy \;\Rightarrow \frac{\partial u}{\partial x} = 2y, \; \frac{\partial u}{\partial y} = 2x\)
- \(\displaystyle v = x^2 - y^2 \;\Rightarrow \frac{\partial v}{\partial x} = 2x, \; \frac{\partial v}{\partial y} = -2y\)
So the Jacobian matrix is:
\[\frac{\partial(u,v)}{\partial(x,y)} = \begin{pmatrix} 2y & \phantom{-}2x \\ 2x & -2y \end{pmatrix}\]
Therefore,
\[\left| \frac{\partial(x,y)}{\partial(u,v)} \right| = \frac{1}{|J|} = \frac{1}{| -4(x^2 + y^2) |} = \frac{1}{4(x^2 + y^2)}\]
Step 2: \(~\) Substituting the integrand and Jacobian
The integrand is \((x^2 + y^2)\sqrt[3]{x^2 - y^2}\), \(~\) and from the transformation:
- \(v = x^2 - y^2 \Rightarrow \sqrt[3]{x^2 - y^2} = \sqrt[3]{v}\)
- \(x^2 + y^2\) appears in both the integrand and the Jacobian, so:
\[(x^2 + y^2) \cdot \sqrt[3]{x^2 - y^2} \cdot \left| \frac{\partial(x,y)}{\partial(u,v)} \right| = (x^2 + y^2) \cdot \sqrt[3]{v} \cdot \frac{1}{4(x^2 + y^2)} = \frac{1}{4} \sqrt[3]{v}\]
So the transformed integral becomes:
\[\iint_S \frac{1}{4} \sqrt[3]{v} \, du\, dv\]
Step 3: \(~\) Find the region \(S\) in \(uv\)-coordinates
We are given the transformation:
\[u = 2xy, \quad v = x^2 - y^2\]
and the original region \(R\) is the unit square:
\[0 \le x \le 1,\quad 0 \le y \le 1\]
We compute the image of the four corners of the square under the transformation:
\((x, y)\) | \(u = 2xy\) | \(v = x^2 - y^2\) | \((u, v)\) |
---|---|---|---|
\((0, 0)\) | \(0\) | \(\phantom{-}0\) | \((0, \phantom{-}0)\) |
\((1, 0)\) | \(0\) | \(\phantom{-}1\) | \((0, \phantom{-}1)\) |
\((0, 1)\) | \(0\) | \(-1\) | \((0, -1)\) |
\((1, 1)\) | \(2\) | \(\phantom{-}0\) | \((2, \phantom{-}0)\) |
We examine how each edge of the square transforms under the change of variables:
- Edge \(x = 0\): \(~u = 0, v = -y^2 \in [-1, 0] \Rightarrow\; {\scriptsize\text{Vertical segment on the } u = 0}\)
- Edge \(y = 0\): \(~u = 0, v = x^2 \in [0, 1] \Rightarrow\; {\scriptsize\text{Another vertical segment on the } u = 0}\)
- Edge \(x = 1\): \(~u = 2y \in [0, 2], v = 1 - y^2 = 1 - \frac{u^2}{4} \Rightarrow\; {\scriptsize\text{Upper parabola}}\)
- Edge \(y = 1\): \(~u = 2x \in [0, 2], v = x^2 - 1 = \frac{u^2}{4} - 1 \Rightarrow\; {\scriptsize\text{Lower parabola}}\)
So, the transformed region is:
\[S = \left\{ (u, v) \ \middle| \ 0 \le u \le 2,\quad \frac{u^2}{4} - 1 \le v \le 1 - \frac{u^2}{4} \right\}\]
Step 4: \(~\) Evaluate the integral
Since the integrand \(v^{1/3}\) is an odd function, and the bounds of \(u\) are symmetric in \(v\), the integral is:
\[\iint_S \frac{1}{4} \sqrt[3]{v} \, du\, dv = 0\]
\(~\)