7  Systems of Linear Differential Equations

7.1 Theory of Linear Systems

  • Here we confine our study to systems of first-order DEs that are special cases of systems that have the normal form

    \[ \begin{aligned} \frac{d x_1}{dt} &= g_1(t, x_1, x_2, \cdots, x_n) \\ \frac{d x_2}{dt} &= g_2(t, x_1, x_2, \cdots, x_n) \\ &\;\vdots \\ \frac{d x_n}{dt} &= g_n(t, x_1, x_2, \cdots, x_n) \end{aligned}\]

    This system is called a first-order system

  • When each of the functions \(\,g_i\), \(i=1,\cdots,n\), is linear in the dependent variables \(x_i\), \(i=1,\cdots,n\), \(\,\) we get the normal form of a first-order system of linear equations

    \[ \begin{aligned} \frac{d x_1}{dt} &= a_{11}(t) x_1 +a_{12}(t) x_2 +\cdots +a_{1n}(t) x_n +f_1(t) \\ \frac{d x_2}{dt} &= a_{21}(t) x_1 +a_{22}(t) x_2 +\cdots +a_{2n}(t) x_n +f_2(t) \\ &\;\vdots \\ \frac{d x_n}{dt} &= a_{n1}(t) x_1 +a_{n2}(t) x_2 +\cdots +a_{nn}(t) x_n +f_n(t) \\ \end{aligned} \tag{LS}\label{eq:LS}\]

    We refer to \(\eqref{eq:LS}\) simply as a linear system. We assume that the coefficient \(a_{ij}(t)\) as well as the functions \(f_i(t)\) are continuous on a common interval \(I\). When \(f_i(t)=0\), \(i=1,\cdots,n\), \(\,\) the linear system is said to be homogeneous; otherwise it is nonhomogeneous

  • If \(\,\mathbf{x}\), \(\mathbf{A}\), and \(\mathbf{f}\) denote the respective matrices

    \[ \mathbf{x}= \begin{pmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{pmatrix}, \; \mathbf{A}= \begin{pmatrix} a_{11} & a_{12} & \cdots & a_{1n}\\ a_{21} & a_{22} & \cdots & a_{2n}\\ \vdots & & & \vdots \\ a_{n1} & a_{n2} & \cdots & a_{nn} \end{pmatrix}, \; \mathbf{f} = \begin{pmatrix} f_1 \\ f_2 \\ \vdots \\ f_n \end{pmatrix}\]

    then the system of linear first-order DEs can be written as

    \[\frac{d\mathbf{x}}{dt}=\mathbf{A}\mathbf{x} +\mathbf{f} \tag{LSM}\label{eq:LSM}\]

  • A solution vector of \(\eqref{eq:LSM}\) can be interpreted geometrically as a set of parametric equations of a space curve. In the case \(n=2\) and \(n=3\), the equations \(x_1=\phi_1(t)\), \(x_2=\phi_2(t)\), and \(x_1=\phi_1(t)\), \(x_2=\phi_2(t)\), \(x_3=\phi_3(t)\) represent curves in 2-space and 3-space, respectively. It is common practice to call such a solution curve a trajectory. The plane is also called the phase plane

  • Initial-Value Problem

    Let \(\,t_0\) denote a point on an interval \(I\) and

    \[\mathbf{x}_0=\begin{pmatrix} \gamma_1 \\ \gamma_2 \\ \vdots \\ \gamma_n \end{pmatrix}\]

    where \(\gamma_i\), \(i=1,\cdots,n\) are given constants. Then the problem

    \[\frac{d\mathbf{x}}{dt}=\mathbf{A}(t)\mathbf{x} +\mathbf{f}(t), \;\; \mathbf{x}(t_0)=\mathbf{x}_0\]

    is an initial-value problem on the interval. Here there exists a unique solution of the initial-value problem if the entries of \(\mathbf{A}\) and \(\mathbf{f}\) are the continuous functions on a common interval \(\,I\)

  • Superposition Principle

    Let \(\,\mathbf{x}_1\), \(\mathbf{x}_2\), \(\cdots\), \(\mathbf{x}_k\,\) be a set of solution vectors of the homogeneous system

    \[\frac{d\mathbf{x}}{dt}=\mathbf{A}(t)\mathbf{x}\]

    on an interval \(\,I\). Then the linear combination

    \[ \mathbf{x}=c_1\mathbf{x}_1 +c_2\mathbf{x}_2 +\cdots +c_k\mathbf{x}_k \]

    where \(c_i\), \(i=1,2,\cdots,k,\) are arbitrary constants, is also a solution on the interval

  • We can introduce the concept of the Wronskian determinant as a test for linear independence. Let \(\,\mathbf{x}_1\), \(\mathbf{x}_2\), \(\cdots\), \(\mathbf{x}_n\) be \(n\) solution vectors of the homogeneous system on \(I\). Then the set of solution vectors is linearly independent on \(I\,\) if and only if the Wronskian

    \[\scriptsize W(\mathbf{x}_1, \mathbf{x}_2, \cdots, \mathbf{x}_n)= \begin{vmatrix} x_{11} & x_{12} & \cdots & x_{1n} \\ x_{21} & x_{22} & \cdots & x_{2n} \\ \vdots & & & \vdots \\ x_{n1} & x_{n2} & \cdots & x_{nn} \end{vmatrix} \neq 0 \]

    for every \(t\) in the interval.

  • For every \(t\) in \(I\), either \(W(\mathbf{x}_1\), \(\mathbf{x}_2\), \(\cdots\), \(\mathbf{x}_n)\neq 0\) or \(W(\mathbf{x}_1\), \(\mathbf{x}_2\), \(\cdots\), \(\mathbf{x}_n)= 0\). Thus if we can show that \(W\neq 0\) for some \(t_0\) in \(I\), \(\,\) then \(W\neq 0\) for every \(t\), \(\,\)hence the set of solutions is linearly independent on the interval

  • Any set of \(n\) linearly independent solution vectors of the homogeneous system on an interval \(I\) is said to be a fundamental set of solutions. Then the general solution of the homogeneous system is

    \[\mathbf{x}=c_1 \mathbf{x}_1 +c_2 \mathbf{x}_2 +\cdots +c_n \mathbf{x}_n\]

    where \(c_i\), \(i=1,2,\cdots,n\) are arbitrary constants

  • General Solution of the Nonhomogeneous System

    For nonhomogeneous systems, a particular solution \(\mathbf{x}_p\) on an interval \(I\) is any vector, free of arbitrary parameters, whose entries are functions that satisfy system \(\text{(LSM)}\). Let

    \[\mathbf{x}_h=c_1 \mathbf{x}_1 +c_2 \mathbf{x}_2 +\cdots +c_n \mathbf{x}_n\]

    denote the general solution of the associated homogeneous system. Then the general solution of the nonhomogeneous system is

    \[\mathbf{x}=\mathbf{x}_h +\mathbf{x}_p\]

7.2 Homogeneous Linear Systems

\(~\)

  • For the general homogeneous linear first-order system

    \[\frac{d\mathbf{x}}{dt}=\mathbf{A}\mathbf{x} \tag{HE}\label{eq:HE}\]

    we are prompted to ask whether we can always find a solution of the form

    \[\mathbf{x}=\begin{pmatrix} k_1 \\ k_2 \\ \vdots \\ k_n \end{pmatrix} e^{\lambda t} =\mathbf{k} e^{\lambda t} \tag{SL}\label{eq:SL}\]

  • If \(\eqref{eq:SL}\) is to be a solution vector of the system, then

    \[ \begin{aligned} \displaystyle \frac{d \mathbf{x}}{dt}&= \mathbf{A}\mathbf{x} \\ &\Downarrow \;\;\mathbf{x}=\mathbf{k}e^{\lambda t} \\ \lambda \mathbf{k} e^{\lambda t}&= \mathbf{A} \mathbf{k} e^{\lambda t}\\ &\Downarrow \;\; \div \,e^{\lambda t} \\ (\mathbf{A} -\lambda \mathbf{I}) \mathbf{k} &= \mathbf{0} \end{aligned} \tag{CE}\label{eq:CE}\]

    In order for \(\eqref{eq:CE}\) to have solutions other than the obvious trivial solution \(\mathbf{k}=\mathbf{0}\), \(\,\)we must have

    \[\mathrm{det}(\mathbf{A} -\lambda\mathbf{I})=0\]

    This polynomial equation of \(\lambda\) is called the characteristic equation of \(\mathbf{A}\); its solutions are the eigenvalues of \(\mathbf{A}\). A solution \(\mathbf{k}\neq \mathbf{0}\) of \(\eqref{eq:CE}\) corresponding to an eigenvalue \(\lambda\) is called an eigenvector of \(\mathbf{A}\)

  • Distinct Real Eigenvalues

    When \(\mathbf{A}\) possesses \(n\) distinct real eigenvalues \(\lambda_i\), \(i=1,2,\cdots,n\), \(\,\)then a set of \(n\) linearly independent eigenvectors \(\mathbf{k}_1\), \(\mathbf{k}_2\), \(\cdots\), \(\mathbf{k}_n\) can always be found and

    \[\mathbf{x}_1=\mathbf{k}_1 e^{\lambda_1 t}, \mathbf{x}_2=\mathbf{k}_2 e^{\lambda_2 t}, \cdots, \mathbf{x}_n=\mathbf{k}_n e^{\lambda_n t}\]

    is a fundamental set of solutions of the homogeneous system \(\eqref{eq:HE}\) on \((-\infty,\infty)\)

\(~\)

Example \(\,\) Solve

\[\left.\begin{array}{cl} &\displaystyle\frac{dx}{dt} = 2x +3y\\ &\displaystyle\frac{dy}{dt} = 2x +y \end{array}\right. \;\; \Rightarrow \;\;\displaystyle \frac{d\mathbf{x}}{dt}=\mathbf{A}\mathbf{x}, \;\mathbf{A}= \begin{pmatrix} 2 & 3\\ 2 & 1 \end{pmatrix}, \;\mathbf{x}=\begin{pmatrix} x \\ y \end{pmatrix}\]

  • From the characteristic equation

    \[\mathrm{det}\,(\mathbf{A} -\lambda\mathbf{I})= \begin{vmatrix} 2 -\lambda & 3\\ 2 & 1 -\lambda \end{vmatrix} =(\lambda +1)(\lambda -4)=0 \]

  • Now for \(\lambda_1=-1\),

    \[ \begin{pmatrix} 3 & 3\\ 2 & 2 \end{pmatrix} \begin{pmatrix} k_1 \\ k_2 \end{pmatrix} =\begin{pmatrix} 0 \\ 0 \end{pmatrix} \]

    Thus \(\,k_1=-k_2\). \(\,\)When \(k_2=-1\), \(\,\)the related eigenvector is

    \[\mathbf{k}_1=\begin{pmatrix} \;\;1 \\ -1 \end{pmatrix}\]

  • For \(\lambda_2=4\),

    \[ \begin{pmatrix} -2 & \;\;3\\ \;\;2 & -3 \end{pmatrix} \begin{pmatrix} k_1 \\ k_2 \end{pmatrix} =\begin{pmatrix} 0 \\ 0 \end{pmatrix} \]

    so that \(k_1=\frac{3}{2}k_2\), \(\,\)and therefore with \(k_2=2\), \(\,\)the corresponding eigenvector is

    \[\mathbf{k}_2=\begin{pmatrix} 3 \\ 2 \end{pmatrix}\]

  • Since we have found two linearly independent solutions

    \[\mathbf{x}_1=\begin{pmatrix} \;\;1 \\ -1 \end{pmatrix} e^{-t} \;\text{ and }\; \mathbf{x}_2=\begin{pmatrix} 3 \\ 2 \end{pmatrix}e^{4t}\]

    the general solution of the system is

    \[\mathbf{x}=c_1 \mathbf{x}_1 +c_2\mathbf{x}_2\]

import numpy as np
import matplotlib.pyplot as plt

w = 6
xl = np.arange(-w, w, 0.1)
yl = np.arange(-w, w, 0.1)
x, y = np.meshgrid(xl, yl)

xdot = 2*x +3*y
ydot = 2*x +y

y_1 = -xl
y_2 = 2/3 *xl
fig, ax = plt.subplots(figsize=(5, 5))

ax.streamplot(x, y, xdot, ydot, color='blue')
ax.plot(xl, y_1, 'r:', xl, y_2, 'r:')
ax.set_title('Phase Portrait')
ax.axis((-w, w, -w, w))
ax.set_xlabel('x')
ax.set_ylabel('y')
ax.grid()
ax.tick_params(axis='both', direction='in')
Figure 7.1: Lotka-Volterra predator-prey model
import pprint

A = np.array([[2, 3], [2, 1]])
ld, k = np.linalg.eig(A)

print('Eigenvalues =', end = ' '); pprint.pprint(ld)
print('Eigenvectors ='); pprint.pprint(k)
Eigenvalues = array([ 4., -1.])
Eigenvectors =
array([[ 0.83205029, -0.70710678],
       [ 0.5547002 ,  0.70710678]])
import sympy
sympy.init_printing()

A_ = sympy.Matrix(A)
A_.eigenvects()

\(\displaystyle \left[ \left( -1, \ 1, \ \left[ \left[\begin{matrix}-1\\1\end{matrix}\right]\right]\right), \ \left( 4, \ 1, \ \left[ \left[\begin{matrix}\frac{3}{2}\\1\end{matrix}\right]\right]\right)\right]\)

\(~\)

Example \(\,\)Use python to obtain the phase portraits of the systems

\(~\)

\(~\)

\[\text{Attractor}\]

\[ \begin{aligned} \frac{dx}{dt} &=-\frac{5}{2}x +2y\\ \frac{dy}{dt} &= \frac{3}{4}x -2y \end{aligned}\]

\[\text{Repeller}\]

\[ \begin{aligned} \frac{dx}{dt} &= 2x +2y\\ \frac{dy}{dt} &= x +3y \end{aligned}\]

\(~\)

\(~\)

  • Repeated Eigenvalues

    For an \(n \times n\) matrix \(\mathbf{A}\), if \(m\) is a positive integer and \((\lambda -\lambda_1)^m\) is a factor of the characteristic equation while \((\lambda -\lambda_1)^{m +1}\) is not a factor, then \(\lambda_1\) is said to be an eigenvalue of multiplicity \(m\)

    • It may be possible to find \(m\) linearly independent eigenvectors \(\,\) \(\mathbf{k}_1\), \(\mathbf{k}_2\), \(\cdots\), \(\mathbf{k}_m\) corresponding to an eigenvalue \(\lambda_1\) of multiplicity \(m \leq n\). In this case, the general solution contains the linear combination

      \[c_1 \mathbf{k}_1 e^{\lambda_1 t} +c_2 \mathbf{k}_2 e^{\lambda_1 t} +\cdots +c_m \mathbf{k}_m e^{\lambda_1 t}\]

  • If there is only one eigenvector corresponding to the eigenvalue \(\lambda_1\) of multiplicity \(m\), then \(m\) linearly independent solutions of the form

    \[ \begin{aligned} \mathbf{x}_1 &= \mathbf{k}_{11} e^{\lambda_1 t}\\ \mathbf{x}_2 &= \mathbf{k}_{11} t e^{\lambda_1 t} +\mathbf{k}_{12} e^{\lambda_1 t}\\ &\vdots\\ \mathbf{x}_m &= \mathbf{k}_{11} \frac{t^{m-1}}{(m-1)!} e^{\lambda_1 t} +\mathbf{k}_{12} \frac{t^{m-2}}{(m-2)!} e^{\lambda_1 t} +\cdots +\mathbf{k}_{1m} e^{\lambda_1 t} \end{aligned}\]

    can always be found

\(~\)

Example \(\,\) Solve

\[ \mathbf{x}' = \left(\begin{array}{rrr} 1 & -2 & 2 \\ -2 & 1 &-2 \\ 2 & -2 & 1 \end{array}\right)\mathbf{x}\]

  • The characteristic equation

    \[\mathrm{det}(\mathbf{A}-\lambda \mathbf{I}) = \left|\begin{array}{ccc} 1-\lambda & -2 & \;\;2 \\ -2 & 1-\lambda &-2 \\ \;\;2 & -2 & 1-\lambda \end{array}\right|=0 \]

    yields \(-(\lambda+1)^2(\lambda-5)=0\). \(\,\) Then \(\lambda_1=\lambda_2=-1\) and \(\lambda_3=5\)

  • For \(\lambda_1=\lambda_2=-1\), \(\,\) we have

    \[ (\mathbf{A} +\mathbf{I}|\mathbf{0}) = \left(\begin{array}{rrr|r} 2 & -2 & 2 & 0\\ -2 & 2 & -2 & 0\\ 2 & -2 & 2 & 0 \end{array}\right) \overset{\text{row operations}}{\Longrightarrow} \left(\begin{array}{rrr|r} 1 & -1 & 1 & 0\\ \hline 0 & 0 & 0 & 0\\ 0 & 0 & 0 & 0 \end{array}\right) \]

    The first row of the last matrix means \(k_1 -k_2 +k_3=0\). \(\,\)By choosing \(k_2=1\), \(k_3=0\) and \(k_2=1\), \(k_3=1\), two linearly independent eigenvectors corresponding to \(\lambda_1\)

    \[\mathbf{k}_1= \left(\begin{array}{r} 1\\ 1\\ 0 \end{array}\right) \; \text{ and } \; \mathbf{k}_2= \left(\begin{array}{r} 0\\ 1\\ 1 \end{array}\right) \]

    are obtained

  • Last, for \(\lambda_3=5\), \(\,\)the Gauss elimination

    \[ (\mathbf{A} -5\mathbf{I}|\mathbf{0}) = \left(\begin{array}{rrr|r} -4 & -2 & 2 & 0\\ -2 & -4 & -2 & 0\\ 2 & -2 & -4 & 0 \end{array}\right) \overset{\text{row operations}}{\Longrightarrow} \left(\begin{array}{rrr|r} 1 & 0 &-1 & 0\\ 0 & 1 & 1 & 0\\ \hline 0 & 0 & 0 & 0 \end{array}\right) \]

    implies \(k_1=k_3\) and \(k_2=-k_3\). Picking \(k_3=1\) gives \(k_1=1\), \(k_2=-1\), and thus a third eigenvector is

    \[\mathbf{k}_3= \left(\begin{array}{r} 1\\ -1\\ 1 \end{array}\right) \]

  • Thus we conclude that the general solution is

    \[\mathbf{x}= c_1\left(\begin{array}{r} 1\\ 1\\ 0 \end{array}\right)e^{-t} + c_2\left(\begin{array}{r} 0\\ 1\\ 1 \end{array}\right)e^{-t} + c_3\left(\begin{array}{r} 1\\ -1\\ 1 \end{array}\right)e^{5t} \]

    \(~\)

    Example \(\,\) Solve

    \[ \mathbf{x}' = \left(\begin{array}{rrr} 2 & 1 & 6 \\ 0 & 2 & 5 \\ 0 & 0 & 2 \end{array}\right)\mathbf{x} \]

  • The characteristic equation \(-(\lambda -2)^3=0\,\) shows that \(\lambda_1=2\,\) is an eigenvalue of multiplicity three. \(\,\)We have

    \[(\mathbf{A} -2\mathbf{I}|\mathbf{0}) = \left(\begin{array}{rrr|r} 0 & 1 & 6 & 0\\ 0 & 0 & 5 & 0\\ 0 & 0 & 0 & 0 \end{array}\right) \]

    Therefore \(\,0 \cdot k_1 +k_2 +6k_3 =0\) and \(k_3=0\;\rightarrow\;k_2=k_3=0\). \(\,\) The choice \(k_1=1\) gives the single eigenvector

    \[\mathbf{k}_{11}= \left(\begin{array}{r} 1\\ 0\\ 0 \end{array}\right) \]

  • A second solution can be found of the form

    \[\mathbf{x}_2 =\mathbf{k}_{11} t e^{2t} +\mathbf{k}_{12} e^{2t} \tag{S1}\label{eq:S1}\]

    To see this, \(\,\)we substitute \(\eqref{eq:S1}\) into the system \(\mathbf{x}'=\mathbf{A}\mathbf{x}\)

    \[\underbrace{(\mathbf{A} -2\mathbf{I})\mathbf{k_{11}}}_{\mathbf{0}}te^{2t} +(\mathbf{A}\mathbf{k}_{12} -2\mathbf{k}_{12} -\mathbf{k}_{11})e^{2t}=0\]

    Since this last equation is to hold for all values of \(t\), \(\,\)we must have

    \[(\mathbf{A} -2\mathbf{I})\mathbf{k}_{12}=\mathbf{k}_{11}\]

  • To find \(\mathbf{x}_2\), \(\,\)we need only solve the additional system for the generalized eigenvector \(\mathbf{k}_{12}\)

    \[ (\mathbf{A} -2\mathbf{I}|\mathbf{k}_{11}) = \left(\begin{array}{rrr|r} 0 & 1 & 6 & 1\\ 0 & 0 & 5 & 0\\ 0 & 0 & 0 & 0 \end{array}\right) \]

    Then \(\,0\cdot k_1 +k_2 +6k_3 =1\) and \(k_3=0\;\rightarrow\;k_2=1, k_3=0\). \(\,\)The choice \(k_1=0\) gives

    \[\mathbf{k}_{12}= \left(\begin{array}{r} 0\\ 1\\ 0 \end{array}\right) \]

  • A third solution can be found of the form

    \[\mathbf{x}_3 =\mathbf{k}_{11} \frac{t^2}{2} e^{2t} +\mathbf{k}_{12}te^{2t} +\mathbf{k}_{13}e^{2t} \tag{S2}\label{eq:S2}\]

    To see this, we substitute \(\eqref{eq:S2}\) into the system \(\mathbf{x}'=\mathbf{A}\mathbf{x}\)

    \[ \begin{aligned} \underbrace{(\mathbf{A} -2\mathbf{I})\mathbf{k_{11}}}_{\mathbf{0}} &\frac{t^2}{2}e^{2t} +\underbrace{(\mathbf{A}\mathbf{k}_{12} -2\mathbf{k}_{12} -\mathbf{k}_{11})}_{\mathbf{0}}\,t e^{2t} \\ &+(\mathbf{A}\mathbf{k}_{13} -2\mathbf{k}_{13} -\mathbf{k}_{12}) e^{2t}=0 \end{aligned}\]

  • Then, \(\,\)to find \(\mathbf{k}_{13}\)

    \[ (\mathbf{A} -2\mathbf{I}|\mathbf{k}_{12}) = \left(\begin{array}{rrr|r} 0 & 1 & 6 & 0\\ 0 & 0 & 5 & 1\\ 0 & 0 & 0 & 0 \end{array}\right) \]

    Then \(\,0\cdot k_1 +k_2 +6k_3 =0\,\) and \(\,5k_3=1\;\rightarrow\;k_2=-\frac{6}{5}, \, k_3=\frac{1}{5}\). \(\,\)The choice \(k_1=0\) gives

    \[\mathbf{k}_{13}= \left(\begin{array}{r} 0\\ -\frac{6}{5}\\ \frac{1}{5} \end{array}\right) \]

  • Thus we see that the general solution is

    \[ \begin{aligned} \mathbf{x}= &\; c_1\left(\begin{array}{r} 1\\ 0\\ 0 \end{array}\right)e^{2t}+ c_2\left[ \left(\begin{array}{r} 1\\ 0\\ 0 \end{array}\right)te^{2t}+ \left(\begin{array}{r} 0\\ 1\\ 0 \end{array}\right)e^{2t} \right] \\&+ c_3\left[ \left(\begin{array}{r} 1\\ 0\\ 0 \end{array}\right)\frac{t^2}{2}e^{2t}+ \left(\begin{array}{r} 0\\ 1\\ 0 \end{array}\right)te^{2t}+ \left(\begin{array}{r} 0\\ -\frac{6}{5}\\ \frac{1}{5} \end{array}\right)e^{2t} \right] \end{aligned} \]

\(~\)

Example \(\,\) Use python to obtain the phase portrait of the system

\[ \begin{aligned} \frac{dx}{dt} &= 3x -18y\\ \frac{dy}{dt} &= 2x -9y \end{aligned}\]

A = np.array([[3, -18], [2, -9]])
ld, k = np.linalg.eig(A)

print('Eigenvalues =', end = ' '); pprint.pprint(ld)
print('Eigenvectors ='); pprint.pprint(np.around(k, decimals=4))
Eigenvalues = array([-3., -3.])
Eigenvectors =
array([[0.9487, 0.9487],
       [0.3162, 0.3162]])
A_ = sympy.Matrix(A)
A_.eigenvects()

\(\displaystyle \left[ \left( -3, \ 2, \ \left[ \left[\begin{matrix}3\\1\end{matrix}\right]\right]\right)\right]\)

w = 6
xl = np.arange(-w, w, 0.1)
yl = np.arange(-w, w, 0.1)
x, y = np.meshgrid(xl, yl)

xdot = 3*x -18*y
ydot = 2*x -9*y

y_1 = 1/3 *xl

fig, ax = plt.subplots(figsize=(5, 5))

ax.streamplot(x, y, xdot, ydot, color='blue')
ax.plot(xl, y_1, 'r:')
ax.set_title('Phase Portrait')
ax.axis((-w, w, -w, w))
ax.set_xlabel('x')
ax.set_ylabel('y')
ax.grid()
ax.tick_params(axis='both', direction='in')
Figure 7.2: Phase Portrait of defective system

\(~\)

Example \(\,\) The \(5 \times 5\) matrix

\[ \mathbf{A}= \begin{pmatrix} 2 & 1 & 0 & 0 & 0\\ 0 & 2 & 0 & 0 & 0\\ 0 & 0 & 2 & 0 & 0\\ 0 & 0 & 0 & 2 & 1\\ 0 & 0 & 0 & 0 & 2 \end{pmatrix} \]

has an eigenvalue \(\lambda_1=2\) of multiplicity 5. Show that three linearly independent eigenvectors corresponding to \(\lambda_1\) can be found. \(\,\)And construct the generalized eigenvectors

  • The system

    \[\scriptsize(\mathbf{A} -2\mathbf{I}|\mathbf{0}) = \left(\begin{array}{rrrrr|r} 0 & 1 & 0 & 0 & 0 & 0\\ 0 & 0 & 0 & 0 & 0 & 0\\ 0 & 0 & 0 & 0 & 0 & 0\\ 0 & 0 & 0 & 0 & 1 & 0\\ 0 & 0 & 0 & 0 & 0 & 0 \end{array}\right) \]

    implies \(k_2=0\) and \(k_5=0\). Then we can pick \((k_1 =1, k_3=k_4=0)\), \((k_3=1, k_1=k_4=0)\) and \((k_4=1, k_1=k_3=0)\) in turn to build three linearly eigenvectors

    \[\scriptsize\mathbf{k}_{11}= \left(\begin{array}{r} 1\\ 0\\ 0\\ 0\\ 0 \end{array}\right),\;\; \mathbf{k}_{21}= \left(\begin{array}{r} 0\\ 0\\ 1\\ 0\\ 0 \end{array}\right),\;\; \mathbf{k}_{31}= \left(\begin{array}{r} 0\\ 0\\ 0\\ 1\\ 0 \end{array}\right) \]

  • The following systems

    \[\scriptsize(\mathbf{A} -2\mathbf{I}|\mathbf{k}_{11}) = \left(\begin{array}{rrrrr|r} 0 & 1 & 0 & 0 & 0 & 1\\ 0 & 0 & 0 & 0 & 0 & 0\\ 0 & 0 & 0 & 0 & 0 & 0\\ 0 & 0 & 0 & 0 & 1 & 0\\ 0 & 0 & 0 & 0 & 0 & 0 \end{array}\right),\;\; (\mathbf{A} -2\mathbf{I}|\mathbf{k}_{31}) = \left(\begin{array}{rrrrr|r} 0 & 1 & 0 & 0 & 0 & 0\\ 0 & 0 & 0 & 0 & 0 & 0\\ 0 & 0 & 0 & 0 & 0 & 0\\ 0 & 0 & 0 & 0 & 1 & 1\\ 0 & 0 & 0 & 0 & 0 & 0 \end{array}\right) \]

    are solved to construct two generalized eigenvectors: The first system gives \(k_2=1\) and \(k_5=0\), and then, for \(\mathbf{k}_{12}\), we can pick \(k_1=k_3=k_4=0\). \(\,\)The second system yields \(k_2=0\) and \(k_5=1\), \(\,\)we can also pick \(k_1=k_3=k_4=0\) for \(\mathbf{k}_{32}\)

    \[\scriptsize \mathbf{k}_{12}= \left(\begin{array}{r} 0\\ 1\\ 0\\ 0\\ 0 \end{array}\right),\;\; \mathbf{k}_{32}= \left(\begin{array}{r} 0\\ 0\\ 0\\ 0\\ 1 \end{array}\right)\]

\(~\)

  • Complex Eigenvalues

    Let \(\mathbf{A}\) be the coefficient matrix having real entries of the homogeneous system, and let \(\mathbf{k}_1\) be an eigenvector corresponding to the complex eigenvalue \(\lambda_1=\alpha +i\beta\), \(~\alpha\) and \(\beta\) real. \(\,\)Then

    \[\mathbf{k}_1 e^{\lambda_1 t}\;\text{ and }\;\bar{\mathbf{k}}_1 e^{\bar{\lambda}_1 t}\]

    are linearly independent solutions of the homogeneous system. \(\,\)By defining

    \[\mathbf{b}_1=\mathrm{Re}(\mathbf{k}_1)\;\text{ and }\; \mathbf{b}_2=\mathrm{Im}(\mathbf{k}_1)\]

    the following vectors are also linearly independent solutions

    \[ \begin{aligned} \mathbf{x}_1 &=\left[\mathbf{b}_1 \cos\beta t - \mathbf{b}_2 \sin\beta t \right]e^{\alpha t} \\ \mathbf{x}_2 &=\left[\mathbf{b}_2 \cos\beta t +\mathbf{b}_1 \sin\beta t \right]e^{\alpha t} \end{aligned}\]

\(~\)

Example \(\,\) Solve the initial value problem

\[ \left.\begin{array}{rl} &\displaystyle \frac{dx}{dt} = 2x +8y\\ &\displaystyle \frac{dy}{dt} = x -2y \end{array}\right.,\quad x(0)=2, \;\; y(0)=-1\]

  • First we obtain the eigenvalues from

    \[\mathrm{det}(\mathbf{A} -\lambda\mathbf{I})= \left| \begin{array}{cc} 2-\lambda & 8 \\ -1 & -2 -\lambda \end{array} \right| =\lambda^2 +4=0\]

    The eigenvalues are \(\lambda_1=2i\) and \(\lambda_2=\bar{\lambda}_1\)

\(~\)

A = np.array([[2, 8], [-1, -2]])

A_ = sympy.Matrix(A)
A_.eigenvects()

\(\displaystyle \left[ \left( - 2 i, \ 1, \ \left[ \left[\begin{matrix}-2 + 2 i\\1\end{matrix}\right]\right]\right), \ \left( 2 i, \ 1, \ \left[ \left[\begin{matrix}-2 - 2 i\\1\end{matrix}\right]\right]\right)\right]\)

\(~\)

  • For \(\lambda_1\), \(\,\)the system

    \[ (\mathbf{A} -2i\mathbf{I}|\mathbf{0}) = \left(\begin{array}{cc|r} 2 -2i & 8 & 0\\ -1 & -2 -2i & 0 \end{array}\right) \overset{\text{row operations}}{\Longrightarrow} \left(\begin{array}{cc|r} 1 & 2 +2i & 0\\ \hline 0 & 0 & 0 \end{array}\right) \]

    gives \(k_1=-(2 +2i)k_2\). \(\,\)By choosing \(k_2=-1\), \(\,\)we get

    \[\mathbf{k}_1=\begin{pmatrix} 2 +2i\\ -1 \end{pmatrix} =\underbrace{\begin{pmatrix} \;\;\,2\\ -1 \end{pmatrix}}_{\mathbf{b}_1} +i\underbrace{\begin{pmatrix} 2\\ 0 \end{pmatrix}}_{\mathbf{b}_2}\]

  • Now we form the general solution

    \[\mathbf{x}= c_1\left[\begin{pmatrix} \;\;\,2\\ -1 \end{pmatrix}\cos 2t -\begin{pmatrix} 2\\ 0 \end{pmatrix}\sin 2t \right] +c_2\left[\begin{pmatrix} 2\\ 0 \end{pmatrix}\cos 2t +\begin{pmatrix} \;\;\,2\\ -1 \end{pmatrix}\sin 2t \right]\]

    The initial condition yields \(2c_1 +2c_2=2\), \(-c_1=-1\) \(\,\)whose solution is \(c_1=1\), \(c_2=0\). \(\,\)Thus solution is

    \[\mathbf{x}= \begin{pmatrix} \;\;\,2\\ -1 \end{pmatrix}\cos 2t -\begin{pmatrix} 2\\ 0 \end{pmatrix}\sin 2t \]

\(~\)

from scipy.integrate import solve_ivp

def myODE(t, y):
    return [2*y[0] +8*y[1], -y[0] -2*y[1]]

tf = 20.0

sol = solve_ivp(myODE, [0, tf], [2, -1], 
                t_eval = np.linspace(0, tf, 200))

fig, ax = plt.subplots(figsize=(6, 4))

ax.plot(sol.t, sol.y[0], 'r-', label = 'x')
ax.plot(sol.t, sol.y[1], 'b-', label = 'y')
ax.axis((0, tf, -4, 4))
ax.tick_params(axis='both', direction='in', pad=8)
ax.legend()
ax.set_xlabel('t')
ax.set_ylabel('x, y');
Figure 7.3: Time series of system with complex eigenvalues
w = 6

xl = np.arange(-w, w, 0.1)
yl = np.arange(-w, w, 0.1)
x, y = np.meshgrid(xl, yl)

xdot = 2*x +8*y
ydot = -x -2*y

fig, ax = plt.subplots(figsize=(5, 5))

ax.streamplot(x, y, xdot, ydot, color='blue')
ax.plot(sol.y[0], sol.y[1], 'r:')

ax.set_title('Phase Portrait')
ax.axis((-w, w, -w, w))
ax.set_xlabel('x')
ax.set_ylabel('y')
ax.grid()
ax.tick_params(axis='both', direction='in')
Figure 7.4: Phase portrait of system with complex eigenvalues

7.3 Solution by Diagonalization

  • A homogeneous system

    \[ \begin{pmatrix} x_1' \\ x_2' \\ \vdots \\ x_n' \end{pmatrix} = \begin{pmatrix} a_{11} & a_{12} & \cdots & a_{1n}\\ a_{21} & a_{22} & \cdots & a_{2n}\\ \vdots & & & \vdots\\ a_{n1} & a_{n2} & \cdots & a_{nn} \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{pmatrix}\]

    is said to be coupled if each \(x_i'\) is expressed as a linear combination of \(x_1, x_2, \cdots, x_n\). \(\,\)If \(\mathbf{A}\) is diagonalizable, \(\,\)the system can be decoupled so each \(x_i'\) is expressed solely in terms of \(x_i\)

  • If \(\mathbf{A}\) has \(n\) linearly independent eigenvectors, \(\,\)we can find a matrix \(\mathbf{P}\) such that \(\mathbf{P}^{-1}\mathbf{A}\mathbf{P}=\mathbf{D}\text{ }\) where \(\text{ }\mathbf{D}\) is a diagonal matrix

  • Making the substitution \(\mathbf{x}=\mathbf{P}\mathbf{y}\) in \(\mathbf{x}'=\mathbf{A}\mathbf{x}\),

    \[ \begin{aligned} \mathbf{x}' &= \mathbf{A}\mathbf{x}\\ &\Downarrow \; \mathbf{x}=\mathbf{P}\mathbf{y}\\ \mathbf{P}\mathbf{y}' &= \mathbf{A}\mathbf{P}\mathbf{y}\\ \mathbf{y}' &= \mathbf{P}^{-1}\mathbf{A}\mathbf{P}\mathbf{y}= \mathbf{D}\mathbf{y} \end{aligned}\]

    The last equation is the same as

    \[ \begin{pmatrix} y_1' \\ y_2' \\ \vdots \\ y_n' \end{pmatrix}= \begin{pmatrix} \lambda_1 & 0 & \cdots & 0\\ 0 & \lambda_2 & \cdots & 0\\ \vdots & & \ddots & \vdots\\ 0 & 0 & \cdots & \lambda_n \end{pmatrix} \begin{pmatrix} y_1 \\ y_2 \\ \vdots \\ y_n \end{pmatrix} \]

  • The general solution of \(\mathbf{y}'=\mathbf{D}\mathbf{y}\) can be written as

    \[\mathbf{y}=\begin{pmatrix} c_1 e^{\lambda_1 t} \\ c_2 e^{\lambda_2 t} \\ \vdots \\ c_n e^{\lambda_n t} \end{pmatrix}\]

    Then the general solution of \(\mathbf{x}'=\mathbf{A}\mathbf{x}\) is obtained from \(\mathbf{x}=\mathbf{P}\mathbf{y}\)

\(~\)

Example \(\,\) Solve

\[ \mathbf{x}' = \left(\begin{array}{rrr} -2 & -1 & 8 \\ 0 & -3 & 8 \\ 0 & -4 & 9 \end{array}\right)\mathbf{x}\]

  • We begin by finding the eigenvalues and corresponding eigenvectors of the coefficient matrix. \(\,\)From \(\mathrm{det}(\mathbf{A} -\lambda\mathbf{I})=0\), \(\,\)we get \(\lambda_1=-2\), \(\lambda_2=1\), and \(\lambda_3=5\). \(\,\)Since the eigenvalues are distinct, the eigenvectors are linearly independent. Solving \((\mathbf{A} -\lambda_i\mathbf{I})=\mathbf{0}\) for \(i=1,2,\) and \(3\) gives, respectively,

    \[ \mathbf{k}_1= \left(\begin{array}{r} 1\\ 0\\ 0 \end{array}\right),\;\; \mathbf{k}_2= \left(\begin{array}{r} 2\\ 2\\ 1 \end{array}\right),\;\; \mathbf{k}_3= \left(\begin{array}{r} 1\\ 1\\ 1 \end{array}\right) \]

  • Thus a matrix that diagonalize \(\mathbf{A}\) is

    \[ \mathbf{P}= \left(\begin{array}{rrr} 1 & 2 & 1 \\ 0 & 2 & 1 \\ 0 & 1 & 1 \end{array}\right)\]

    The substitution \(\mathbf{x}=\mathbf{P}\mathbf{y}\) in \(\mathbf{x}'=\mathbf{A}\mathbf{x}\) gives the decoupled system \(\mathbf{y}'=\mathbf{D}\mathbf{y}\). The entries on the main diagonal of \(\mathbf{D}\) are the eigenvalues of \(\mathbf{A}\) corresponding to the order in which the eigenvectors appear in \(\mathbf{P}\). The general solution of the decoupled system is

    \[ \mathbf{y}= \left(\begin{array}{l} c_1 e^{-2t}\\ c_2 e^{t}\\ c_3 e^{5t} \end{array}\right)\]

  • Hence the solution of the given system is

    \[ \begin{aligned} \mathbf{x}=\mathbf{P}\mathbf{y}&= \left(\begin{array}{rrr} 1 & 2 & 1 \\ 0 & 2 & 1 \\ 0 & 1 & 1 \end{array}\right) \left(\begin{array}{l} c_1 e^{-2t}\\ c_2 e^{t}\\ c_3 e^{5t} \end{array}\right) \\&= c_1 \left(\begin{array}{l} 1\\ 0\\ 0 \end{array}\right) e^{-2t}+ c_2 \left(\begin{array}{l} 2\\ 2\\ 1 \end{array}\right) e^{t}+ c_3 \left(\begin{array}{l} 1\\ 1\\ 1 \end{array}\right) e^{5t} \end{aligned}\]

\(~\)

7.4 Nonhomogeneous Linear Systems

  • The general solution of a nonhomogeneous linear system \(\mathbf{x}'=\mathbf{A}\mathbf{x} +\mathbf{f}(t)\) is \(\mathbf{x}=\mathbf{x}_h +\mathbf{x}_p\) where \(\mathbf{x}_h\) is the complementary function of the associated homogeneous linear system and \(\mathbf{x}_p\) is any particular solution of the nonhomogeneous system

7.4.1 Method of undetermined coefficients

  • The method of undetermined coefficients consists of making an educational guess about the form of a particular solution vector \(\mathbf{x}_p\). The matrix version of undetermined coefficients is only applicable when the entries of \(\mathbf{A}\) are constants and the entires of \(\mathbf{f}(t)\) are constants, polynomials, exponential functions, sines and cosines, or finite sums and products of these functions

\(~\)

Example \(\,\) Solve

\[ \mathbf{x}' = \left(\begin{array}{rr} -1 & 2 \\ -1 & 1 \end{array}\right)\mathbf{x}+ \left(\begin{array}{r} -8 \\ 3 \end{array}\right) \]

  • We first solve the associated homogeneous system

    \[ \mathbf{x}' = \left(\begin{array}{rr} -1 & 2 \\ -1 & 1 \end{array}\right)\mathbf{x} \]

    The characteristic equation of \(\mathbf{A}\)

    \[ \mathrm{det}(\mathbf{A} -\lambda\mathbf{I})= \left|\begin{array}{cc} -1 -\lambda & 2 \\ -1 & 1 -\lambda \end{array}\right|=\lambda^2+1=0 \]

    yields the complex eigenvalues \(\lambda_1=i\) and \(\lambda_2=\bar{\lambda}_1=-i\)

  • For \(\lambda_1=i\),

    \[ (\mathbf{A} -i\mathbf{I}|\mathbf{0})= \left(\begin{array}{cc|r} -1 -i & 2 & 0\\ -1 & 1 -i & 0 \end{array}\right) \overset{\text{row operations}}{\Longrightarrow} \left(\begin{array}{cc|r} 1 & -1 +i & 0\\ \hline 0 & 0 & 0 \end{array}\right) \]

    gives an eigenvector

    \[ \mathbf{k}_1 = \left(\begin{array}{c} 1 -i \\ 1 \end{array}\right) \]

    Now we build the general solution of the associated homogeneous system

    \[\mathbf{x}_h= c_1 \left[ \begin{pmatrix} 1 \\ 1 \end{pmatrix} \cos t -\begin{pmatrix}-1 \\\;\; 0 \end{pmatrix} \sin t \right] +c_2 \left[ \begin{pmatrix}-1 \\\;\; 0 \end{pmatrix} \cos t +\begin{pmatrix} 1 \\ 1 \end{pmatrix} \sin t \right] \]

  • Since \(\mathbf{f}\) is a constant vector, \(\,\)we assume a constant particular solution vector

    \[\mathbf{x}_p=\begin{pmatrix} a_1 \\ b_1 \end{pmatrix}\]

    \[ \mathbf{0} = \left(\begin{array}{rr} -1 & 2 \\ -1 & 1 \end{array}\right)\begin{pmatrix} a_1 \\ b_1 \end{pmatrix}+ \left(\begin{array}{r} -8 \\ 3 \end{array}\right) \]

    Solving this algebraic system gives

    \[\mathbf{x}_p=\begin{pmatrix} 14 \\ 11 \end{pmatrix}\]

\(~\)

Example \(\,\) Solve

\[ \mathbf{x}' = \left(\begin{array}{rr} 6 & 1 \\ 4 & 3 \end{array}\right)\mathbf{x}+ \left(\begin{array}{c} 6t \\ -10t +4 \end{array}\right) \]

  • The eigenvalues and corresponding eigenvectors of the associated homogeneous system are found to be \(\lambda_1=2\), \(\lambda_2=7\),

    \[\mathbf{k}_1=\begin{pmatrix} \phantom{-}1 \\ -4 \end{pmatrix} \;\text{ and } \;\mathbf{k}_2=\begin{pmatrix} 1 \\ 1 \end{pmatrix}\]

    Hence the complementary function is

    \[\mathbf{x}_h= c_1 \begin{pmatrix} \phantom{-}1 \\ -4 \end{pmatrix} e^{2t} +c_2 \begin{pmatrix} 1 \\ 1 \end{pmatrix} e^{7t}\]

  • Now we shall try to find the particular solution of the form

    \[\mathbf{x}_p= \begin{pmatrix} a_2 \\ b_2 \end{pmatrix} t +\begin{pmatrix} a_1 \\ b_1 \end{pmatrix} \]

    Substituting this assumption into the given system and solving the resultant algebraic equations yields

    \[\mathbf{x}_p= \begin{pmatrix} -2 \\ \phantom{-}6 \end{pmatrix} t +\frac{1}{7}\begin{pmatrix} -4 \\ \;10 \end{pmatrix} \]

\(~\)

Example \(\,\) Determine the form of a particular solution vector \(\mathbf{x}_p\), \(\,\)for the system

\[ \mathbf{x}' = \left(\begin{array}{rr} 5 & 3 \\ -1 & 1 \end{array}\right)\mathbf{x}+ \left(\begin{array}{c} -2e^{-t} +1 \\ e^{-t} -5t +7 \end{array}\right)\]

  • Because \(\mathbf{f}\) can be written in matrix terms as

    \[\mathbf{f}= \begin{pmatrix} -2 \\ \phantom{-}1 \end{pmatrix} e^{-t} +\begin{pmatrix} \phantom{-}0 \\ -5 \end{pmatrix} t +\begin{pmatrix} 1 \\ 7 \end{pmatrix}\]

    a natural assumption for a particular solution would be

    \[\mathbf{x}_p= \begin{pmatrix} a_3 \\ b_3 \end{pmatrix} e^{-t} +\begin{pmatrix} a_2 \\ b_2 \end{pmatrix} t +\begin{pmatrix} a_1 \\ b_1 \end{pmatrix}\]

\(~\)

  • The method of undetermined coefficients for linear systems is not as straightforward as the last three examples would seem to indicate. But there are further difficulties

  • For example, in \(2 \times 2\) system, if \(\mathbf{f}(t)\) is a constant vector and \(\lambda=0\) \(\,\)is an eigenvalue of multiplicity one, \(\,\)then \(\mathbf{x}_p\) contains a constant vector. \(\,\)We would ordinarily try a particular solution of the form

    \[\mathbf{x}_p= \begin{pmatrix} a_1 \\ b_1 \end{pmatrix} t\]

    This is not the proper assumption for linear systems; it should be

    \[\mathbf{x}_p= \begin{pmatrix} a_2 \\ b_2 \end{pmatrix} t +\begin{pmatrix} a_1 \\ b_1 \end{pmatrix}\]

  • Similarly, in the last Example, if we replace \(e^{-t}\) in \(\mathbf{f}(t)\) by \(e^{2t}\) (\(\lambda=2\) is an eigenvalue), \(\,\)then the correct form of the particular solution vector is

    \[\mathbf{x}_p= \begin{pmatrix} a_4 \\ b_4 \end{pmatrix} te^{2t} +\begin{pmatrix} a_3 \\ b_3 \end{pmatrix} e^{2t} +\begin{pmatrix} a_2 \\ b_2 \end{pmatrix} t +\begin{pmatrix} a_1 \\ b_1 \end{pmatrix}\]

\(~\)

7.4.2 Method of Variation of Parameters

  • A Fundamental Matrix

    If \(\mathbf{x}_1\), \(\mathbf{x}_2\), \(\cdots\), \(\mathbf{x}_n\) is a fundamental set of solutions of the homogeneous system \(\mathbf{x}'=\mathbf{A}\mathbf{x}\), then its general solution is the linear combination \(\mathbf{x}=c_1\mathbf{x}_1 +c_2\mathbf{x}_2 +\cdots +c_n\mathbf{x}_n\) or

    \[\scriptsize \mathbf{x}= c_1\begin{pmatrix} x_{11} \\ x_{21} \\ \vdots \\ x_{n1} \end{pmatrix} +c_2\begin{pmatrix} x_{12} \\ x_{22} \\ \vdots \\ x_{n2} \end{pmatrix} +\cdots +c_n\begin{pmatrix} x_{1n} \\ x_{2n} \\ \vdots \\ x_{nn} \end{pmatrix} =\begin{pmatrix} x_{11} & x_{12} & \cdots & x_{1n}\\ x_{21} & x_{22} & \cdots & x_{2n}\\ \vdots & & \ddots & \vdots\\ x_{n1} & x_{n2} & \cdots & x_{nn}\\ \end{pmatrix} \begin{pmatrix} c_1 \\ c_2 \\ \vdots \\ c_n \end{pmatrix}\]

  • In other words, the general solution can be written as the product

    \[\mathbf{x}=\boldsymbol{\Phi}(t)\mathbf{c}\]

    where \(\mathbf{c}\) is the column vector of constants and \(\boldsymbol{\Phi}\) is the fundamental matrix

  • We need to know two properties of a fundamental matrix:

    • A fundamental matrix \(\boldsymbol{\Phi}(t)\) is nonsingular

    • If \(\boldsymbol{\Phi}(t)\) is a fundamental matrix of \(\mathbf{x}'=\mathbf{A}\mathbf{x}\), then

      \[\boldsymbol{\Phi}'(t)=\mathbf{A}\boldsymbol{\Phi}(t)\]

  • Variation of Parameters

    We ask whether it is possible to replace \(\mathbf{c}\) by

    \[\mathbf{u}(t)= \begin{pmatrix} u_1(t) \\ u_2(t) \\ \vdots \\ u_n(t) \end{pmatrix}\;\text{ so that }\;\mathbf{x}_p=\boldsymbol{\Phi}(t)\mathbf{u}(t)\]

    is a particular solution of \(\,\mathbf{x}'=\mathbf{A}\mathbf{x} +\mathbf{f}(t)\)

    \[ \begin{aligned} \mathbf{x}'&=\mathbf{A}\mathbf{x} +\mathbf{f}(t)\\ &\;\Big\Downarrow \;\;\mathbf{x}_p=\boldsymbol{\Phi}(t)\mathbf{u}(t)\\ \boldsymbol{\Phi}'(t)\mathbf{u}(t) +\boldsymbol{\Phi}(t)\mathbf{u}'(t)&=\mathbf{A}\boldsymbol{\Phi}(t)\mathbf{u}(t) +\mathbf{f}(t)\\ &\;\Big\Downarrow \;\;\boldsymbol{\Phi}'(t)=\mathbf{A}\boldsymbol{\Phi}(t)\\ \boldsymbol{\Phi}(t)\mathbf{u}'(t)&=\mathbf{f}(t)\\ &\Downarrow \\ \mathbf{u}(t)&=\int\boldsymbol{\Phi}^{-1}(t)\mathbf{f}(t)\;dt +\mathbf{c}_0\\ &\Downarrow \\ \mathbf{x}_p&=\boldsymbol{\Phi}(t)\int\boldsymbol{\Phi}^{-1}(t)\mathbf{f}(t)\;dt +\boldsymbol{\Phi}(t) \mathbf{c}_0 \end{aligned}\]

  • Thus the general solution is

    \[ \mathbf{x}=\boldsymbol{\Phi}(t)\bar{\mathbf{c}}+\boldsymbol{\Phi}(t) \int\boldsymbol{\Phi}^{-1}(t)\mathbf{f}(t)\;dt \]

    where \(\;\bar{\mathbf{c}}=\mathbf{c} +\mathbf{c}_0\)

  • If we set \(\mathbf{x}_0=\boldsymbol{\Phi}(t_0)\bar{\mathbf{c}}\,\) with an initial condition \(\mathbf{x}(t_0)=\mathbf{x}_0\), \(\,\)the solution of the initial value problem is

    \[ \mathbf{x}=\boldsymbol{\Phi}(t)\boldsymbol{\Phi}^{-1}(t_0)\mathbf{x}_0 +\boldsymbol{\Phi}(t)\int_{t_0}^t\boldsymbol{\Phi}^{-1}(s)\mathbf{f}(s)\;ds \]

\(~\)

Example \(\,\) Find the general solution of the nonhomogeneous system

\[ \mathbf{x}' = \left(\begin{array}{rr} -3 & 1 \\ 2 &-4 \end{array}\right)\mathbf{x}+ \left(\begin{array}{c} 3t \\ e^{-t} \end{array}\right)\]

  • The solution vectors of the homogeneous system are then

    \[ \mathbf{x}_1 = \left(\begin{array}{c} e^{-2t} \\ e^{-2t} \end{array}\right)\;\text{and}\; \mathbf{x}_2 = \left(\begin{array}{c} \;\;\;\;e^{-5t} \\ -2e^{-5t} \end{array}\right)\]

  • Hence

    \[ \boldsymbol{\Phi}(t) = \left(\begin{array}{rr} e^{-2t} & \;\;\;\;e^{-5t} \\ e^{-2t} & -2e^{-5t} \end{array}\right)\;\text{and}\; \boldsymbol{\Phi}^{-1}(t) =\frac{1}{3} \left(\begin{array}{rr} 2e^{2t} & \;\;\;\;e^{2t} \\ e^{5t} & -e^{5t} \end{array}\right)\]

    Then we obtain

    \[ \begin{aligned} \mathbf{x}_p &=\boldsymbol{\Phi}(t)\int\boldsymbol{\Phi}^{-1}(t)\mathbf{f}(t)\;dt\\ &= \left(\begin{array}{rr} e^{-2t} & \;\;\;\;e^{-5t}\\ e^{-2t} & -2e^{-5t} \end{array}\right) {\Large\int} \frac{1}{3} \left(\begin{array}{rr} 2e^{2t} & \;\;\;\;e^{2t} \\ e^{5t} & -e^{5t} \end{array}\right) \left(\begin{array}{c} 3t \\ e^{-t} \end{array}\right)\,dt\\ &=\left(\begin{array}{c} \frac{6}{5}t -\frac{27}{50} +\frac{1}{4}e^{-t}\\ \frac{3}{5}t -\frac{21}{50} +\frac{1}{2}e^{-t} \end{array}\right) \end{aligned}\]

7.4.3 Diagonalization

  • Suppose \(\mathbf{P}\) is the matrix such that \(\mathbf{P}^{-1}\mathbf{A}\mathbf{P}=\mathbf{D}\), where \(\mathbf{D}\) is a diagonal matrix. Substituting \(\mathbf{x}=\mathbf{P}\mathbf{y}\) into the nonhomogeneous system gives

    \[ \begin{aligned} \mathbf{x}'&=\mathbf{A}\mathbf{x} +\mathbf{f}\\ &\;\big\Downarrow \;\mathbf{x}=\mathbf{P}\mathbf{y} \\ \mathbf{P}\mathbf{y}'&=\mathbf{A}\mathbf{P}\mathbf{y} +\mathbf{f}\\ \mathbf{y}'&= \mathbf{P}^{-1}\mathbf{A}\mathbf{P}\mathbf{y} +\mathbf{P}^{-1}\mathbf{f}\\ \mathbf{y}'&= \mathbf{D}\mathbf{y} +\mathbf{P}^{-1}\mathbf{f}\\ &\;\big\Downarrow \;\mathbf{g}=\mathbf{P}^{-1}\mathbf{f}\\ \mathbf{y}'&= \mathbf{D}\mathbf{y} +\mathbf{g} \end{aligned}\]

    In the last equation, \(\mathbf{g}\) ia a column vector. So each differential equation has the form of \(y'_i=\lambda_i y_i +g_i(t)\), \(i=1,\cdots,n\). \(\,\)Unlike the procedure for solving a homogeneous system, \(\,\)we now are required to compute the inverse of \(\mathbf{P}\)

7.5 Matrix Exponential

  • We can define a matrix exponential \(e^{\mathbf{A}t}\) so that \(\mathbf{x}'=\mathbf{A}\mathbf{x}\) has a solution \(\mathbf{x}=e^{\mathbf{A}t}\mathbf{c}\)

    \[e^{\mathbf{A}t}=\mathbf{I} +\mathbf{A}t +\mathbf{A}^2\frac{t^2}{2!} +\cdots +\mathbf{A}^k\frac{t^k}{k!} +\cdots =\sum_{k=0}^\infty \mathbf{A}^k \frac{t^k}{k!}\]

    The derivative of \(e^{\mathbf{A}t}\) is obtained by differentiating term by term

    \[ \begin{aligned} \frac{d}{dt}e^{\mathbf{A}t} &=\frac{d}{dt}\left[\mathbf{I} +\mathbf{A}t +\mathbf{A}^2\frac{t^2}{2!} +\cdots +\mathbf{A}^k\frac{t^k}{k!} +\cdots \right]\\ &=\mathbf{A} +\mathbf{A}^2t +\mathbf{A}^3\frac{t^2}{2!} +\cdots +\mathbf{A}^{k +1}\frac{t^k}{k!} +\cdots\\ &=\mathbf{A}\left[\mathbf{I} +\mathbf{A}t +\mathbf{A}^2\frac{t^2}{2!} +\cdots +\mathbf{A}^k\frac{t^k}{k!} +\cdots\right]=\mathbf{A}e^{\mathbf{A}t} \end{aligned}\]

  • Now we can prove that \(\mathbf{x}=e^{\mathbf{A}t}\mathbf{c}\) is the solution of \(\mathbf{x}'=\mathbf{A}\mathbf{x}\) for every constant vector \(\mathbf{c}\)

    \[\mathbf{x}'=\frac{d}{dt}e^{\mathbf{A}t}\mathbf{c}=\mathbf{A}e^{\mathbf{A}t}\mathbf{c} =\mathbf{A}\left(e^{\mathbf{A}t}\mathbf{c}\right)=\mathbf{A}\mathbf{x}\]

  • If we denote \(e^{\mathbf{A}t}\) by the symbol \(\boldsymbol{\Psi}(t)\), then \(\frac{d}{dt}e^{\mathbf{A}t}=\mathbf{A}e^{\mathbf{A}t}\) is equivalent to \(\boldsymbol{\Psi}'(t)=\mathbf{A}\boldsymbol{\Psi}(t)\). In addition, \(\boldsymbol{\Psi}(0)=e^{\mathbf{A}0}=\mathbf{I}\) and so \(\mathrm{det}\,\boldsymbol{\Psi}(0)\neq 0\). These two properties are sufficient to conclude that \(\boldsymbol{\Psi}(t)\) is a fundamental matrix of \(\mathbf{x}'=\mathbf{A}\mathbf{x}\). Then it is always nonsingular and \(\left(e^{\mathbf{A}t}\right)^{-1}=e^{-\mathbf{A}t}\)

  • For a nonhomogeneous system of linear first-order DEs, the general solution is

    \[ \mathbf{x}=\mathbf{x}_h +\mathbf{x}_p =e^{\mathbf{A}t}\mathbf{c} +e^{\mathbf{A}t}\int_{t_0}^te^{-\mathbf{A}s}\mathbf{f}(s)\;ds \]

  • Computation of \(e^{\mathbf{A}t}\): \(\,\) Using the Laplace Transform

    \(\mathbf{x}=e^{\mathbf{A}t}\) is a solution of the initial value problem

    \[\mathbf{x}'=\mathbf{A}\mathbf{x}, \;\;\mathbf{x}(0)=\mathbf{I}\]

    If \(\mathbf{x}(s)=\mathcal{L}\{e^{\mathbf{A}t}\}\), \(\,\)then the Laplace transform of the above initial value problem is

    \[ \begin{aligned} s\mathbf{x}(s) -\mathbf{I}&=\mathbf{A}\mathbf{x}(s)\\ (s\mathbf{I} -\mathbf{A})\mathbf{x}(s)&=\mathbf{I}\\ \mathbf{x}(s)&=(s\mathbf{I} -\mathbf{A})^{-1} \end{aligned}\]

    In other words,

    \[e^{\mathbf{A}t}=\mathcal{L}^{-1}\{(s\mathbf{I} -\mathbf{A})^{-1}\}\]

  • Computation of \(e^{\mathbf{A}t}\):\(\text{ }\) \(\,\) Using Powers \(\mathbf{A}^m\)

    For computing an arbitrary power \(\mathbf{A}^k\), \(k\) a nonnegative integer, \(\,\)we can write

    \[ \mathbf{A}^k=\sum_{j=0}^{n -1}c_j(k)\mathbf{A}^j\;\text{and}\; \lambda^k=\sum_{j=0}^{n -1}c_j(k)\lambda^j\]

    where the last expression is valid for the eigenvalues \(\lambda_1\), \(\lambda_2\), \(\cdots\), \(\lambda_n\). \(\,\)If the eigenvalues are distinct, by setting \(\lambda=\lambda_1,\lambda_2,\cdots,\lambda_n\) in the second expression, \(\,\)we were able to find \(c_j(k)\) in the first expression by solving \(n\) equations in \(n\) unknowns. From the definition of \(e^{\mathbf{A}t}\), \(\,\)we have

    \[ e^{\mathbf{A}t}=\sum_{k=0}^\infty \mathbf{A}^k \frac{t^k}{k!}\;\text{and}\; e^{\lambda t}=\sum_{k=0}^\infty \lambda^k \frac{t^k}{k!} \]

    We next use to replace \(\mathbf{A}^k\) and \(\lambda^k\) as finite sums followed by an interchange of the order of summations

    \[ \begin{aligned} e^{\mathbf{A}t}&=\sum_{k=0}^\infty \frac{t^k}{k!}\left(\sum_{j=0}^{n -1}c_j(k)\mathbf{A}^j\right) =\sum_{j=0}^{n -1}\mathbf{A}^j\left(\sum_{k=0}^\infty \frac{t^k}{k!}c_j(k)\right) =\sum_{j=0}^{n -1}\mathbf{A}^j b_j\\ e^{\lambda t}&=\sum_{k=0}^\infty\frac{t^k}{k!}\left(\sum_{j=0}^{n -1}c_j(k)\lambda^j\right) =\sum_{j=0}^{n -1}\lambda^j\left(\sum_{k=0}^\infty\frac{t^k}{k!}c_j(k)\right) =\sum_{j=0}^{n -1}\lambda^j b_j \end{aligned}\]

    Analogous to how we used the eigenvalues of \(\mathbf{A}\) to determine the \(c_j\), \(\,\)we again use the eigenvalues to solve a system of equations to determine the \(b_j\)

\(~\)

Example \(\,\) Compute \(e^{\mathbf{A}t}\) for

\[\mathbf{A} = \left(\begin{array}{rr} 1 & -1\\ 2 & -2 \end{array}\right)\]

\(~\)

  • First we compute the matrix \(s\mathbf{I} -\mathbf{A}\) and then find its inverse

    \[s\mathbf{I} -\mathbf{A}= \left(\begin{array}{cc} s -1 & 1\\ -2 & s +2 \end{array}\right)\]

    \[(s\mathbf{I} -\mathbf{A})^{-1}= \left(\begin{array}{cc} \frac{s +2}{s(s +1)} & \frac{-1}{s(s +1)}\\ \frac{2}{s(s +1)} & \frac{s -1}{s(s +1)} \end{array}\right)\]

  • Then we decompose the entries of the last matrix into partial fractions

    \[(s\mathbf{I} -\mathbf{A})^{-1}= \left(\begin{array}{cc} \frac{2}{s} -\frac{1}{s +1} & -\frac{1}{s} +\frac{1}{s +1}\\ \frac{2}{s} -\frac{2}{s +1} & -\frac{1}{s} +\frac{2}{s +1} \end{array}\right)\]

    Taking the inverse Laplace transform gives the desired result

    \[e^{\mathbf{A}t} = \left(\begin{array}{cc} 2 -e^{-t} & -1 +e^{-t} \\ 2 -2e^{-t} & -1 +2e^{-t} \end{array}\right)\]

\(~\)

A = sympy.Matrix([[1, -1], [2, -2]])
s = sympy.symbols('s')
t = sympy.symbols('t', real=True, positive=True)

lp_sol = (s*sympy.eye(2) -A).inv()
sympy.inverse_laplace_transform(lp_sol, s, t)

\(\displaystyle \left[\begin{matrix}2 - e^{- t} & -1 + e^{- t}\\2 - 2 e^{- t} & -1 + 2 e^{- t}\end{matrix}\right]\)

\(~\)

Example \(\,\) Compute \(e^{\mathbf{A}t}\) for

\[\mathbf{A} = \left(\begin{array}{rr} -2 & 4\\ -1 & 3 \end{array}\right)\] \(~\)

  • The eigenvalues of \(\mathbf{A}\) are \(\lambda_1=-1\) and \(\lambda_2=2\). Now since \(\mathbf{A}\) is a \(2 \times 2\) matrix, \(\,\)we have

    \[e^{\mathbf{A}t}=b_0\mathbf{I} +b_1\mathbf{A}\;\text{ and }\;e^{\lambda t}=b_0 +b_1\lambda\]

    Setting \(\lambda=-1\) and \(\lambda=2\) in the second equation gives two equations in the two unknowns \(b_0\) and \(b_1\). \(\,\)Solving the system yields

    \[\scriptsize b_0=\frac{1}{3}\left[e^{2t} +2e^{-t}\right], \; b_1=\frac{1}{3}\left[e^{2t} -e^{-t}\right]\]

    Substituting these values in the first equation and simplifying the entries yields

    \[e^{\mathbf{A}t} = \left(\begin{array}{cc} -\frac{1}{3}e^{2t} +\frac{4}{3}e^{-t} & \frac{4}{3}e^{2t} -\frac{4}{3}e^{-t} \\ -\frac{1}{3}e^{2t} +\frac{1}{3}e^{-t} & \frac{4}{3}e^{2t} -\frac{1}{3}e^{-t} \end{array}\right)\]

\(~\)

A = sympy.Matrix([[-2, 4], [-1, 3]])
t = sympy.symbols('t', real = True, positive = True)
sympy.exp(A*t)

\(\displaystyle \left[\begin{matrix}- \frac{e^{2 t}}{3} + \frac{4 e^{- t}}{3} & \frac{4 e^{2 t}}{3} - \frac{4 e^{- t}}{3}\\- \frac{e^{2 t}}{3} + \frac{e^{- t}}{3} & \frac{4 e^{2 t}}{3} - \frac{e^{- t}}{3}\end{matrix}\right]\)

\(~\)

Worked Exercises